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SUMMARY
Background: The findings of epidemiological studies, 
 diagnostic tests, and comparative therapeutic trials are 
often presented in 2 × 2 tables. These must be interpreted 
correctly for a proper understanding of the findings. 

Methods: The authors present basic statistical concepts 
required for the analysis of nominal data, referring to 
 standard works in statistics.

Results: The relative risk and odds ratio are defined to be 
indices for the relationship between two binary quantities 
(e.g., exposure—yes/no and disease—yes/no). The topics 
dealt with in this article include the effect of sample size 
on the length of the confidence interval and the p-value, 
and also inaccuracies caused by measuring error.  
Exposures are often expressed on a three-level scale 
(none, low, high). The authors also consider the 2×3 table 
as an extension of the 2 × 2 table and discuss the cate -
gorization of continuous measurements. Typically, more 
than one factor is involved in the development of a dis-
ease.  
The effect that a further factor can have on the observed 
relationship be tween the exposure and the disease is 
 discussed.

Conclusions: Sample size, measurement error, categorization, 
and confounders influence the statistical interpretation of 
2 × 2 tables in many ways. Readers of scientific publi-
cations should know the inherent problems in the interpre-
tation of simple 2×2 tables and check that the authors 
have taken these into account adequately in analyzing and 
interpreting their data.
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T he results of epidemiological studies, diagnostic 
test procedures and therapeutic comparisons are 

often presented as 2 x 2 tables. The terms four-field 
table, contingency table, and cross table are also often 
used. For example, the British Medical Journal recently 
published a case control study in which the association 
between tea consumption and esophageal carcinoma 
was examined (1). Of the 300 patients with esophageal 
carcinoma (“cases”), 249 reported that they never, or 
very rarely, drank green tea; 17 (6.4%) frequently drank 
green tea. Of the 571 study participants without esoph -
ageal carcinoma (“controls”), 356 reported that they 
rarely drank green tea, in comparison with 30 subjects 
with regular consumption. The findings were presented 
in a 2 x 2 table (1). It is remarkable that some of the par-
ticipants provided no information (missing data). As a 
second example, let us consider a clinical study with 
patients with metastatic breast cancer, in which factors 
investigated included the influence of the prior therapy 
(2). All patients had received taxanes. Progression was 
detected in 10 (28.6%) of the 35 patients with prior 
 anthracycline treatment. There was a greater rate of 
progression (15 out of 26; 57.7%) in the group without 
prior anthracycline treatment. In the case control study, 
an alternative classification could be selected for tea 
consumption, for example “never,” “moderate,” or 
“frequent”. In the therapeutic study, the tumor response 
is often classified as “complete remission,” “partial 
 remission,” or “no change or progression”.

The relative risk (RR) or the odds ratio (OR) can be 
calculated from the simple 2 x 2 table. This is why it is 
important to understand the central properties of the 
2 x 2 table and to know how even simple extensions 
can change the analysis and interpretation. If this is 
overlooked, wrong conclusions may be drawn, leading 
to mistaken assessment of the risk, diagnosis, progno-
sis, or therapy for the individual patient.

Typically, more than one factor is involved in the de-
velopment of a disease. For this reason, the analysis 
should consider more than one potential factor in most 
situations. For example, not only the type and tempera-
ture of the tea should be considered, but also coffee and 
alcohol consumption. Simple contingency tables are 
then no longer adequate for the analyses and presenta-
tion of the results. The evaluations must be performed 
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with multivariate models, which simultaneously 
 consider several variables.

In the following sections, we will employ the no-
tation of the 2 x 2 table (see Box) and discuss the results 
of a hypothetical study (Table 1). We will define the 
terms risk, relative risk, and odds ratio and discuss the 
influence of the sample size on the length of the confi-
dence interval and on the p-value. We will also explain 
how measurement errors can lead to bias in the result. 
As a simple extension, we will then consider the 2 x 3 
table and explain how an additional factor can affect 
the observed correlation between exposure and disease. 
We will use the term “risk factor,” taken from epidemi-
ology. The same considerations apply analogously to 
diagnosis, prognosis, and therapy. Sauerbrei and 
Schumacher (1999) (3) have discussed additional as-
pects relevant to prognosis studies. For further in-
formation, we refer the reader to Fletcher et al. (2005) 
(4), Altman (1991) (5), Campbell et al. (2007) (6), and 
Schumacher and Schulgen (2008) (7).

Definitions
Let us consider a group of n persons. We are interested 
in the following two properties:
● Is the person exposed or not exposed?

● Is the person ill or not?
The word “exposed” is used here to represent 

 various characteristics, such as people exposed to a 
specific occupational stress, persons with a specific 
genetic constellation, or persons with values outside the 
normal range for specific laboratory parameters. In the 
example above, this means individuals who “fre-
quently” drink green tea. In therapeutic studies, 
 “exposed” can be replaced by “therapy A,” “not ex-
posed” by “therapy B,” “ill” by “no therapeutic 
 success,” and “not ill” by “therapeutic success”.

In Table 1, we consider a cohort study with 450 per-
sons, 36 of whom are ill and 414 not ill. Two thirds of 
the persons (300) are exposed, while one third is not ex-
posed. The incidence rate is 8% (36 of 450) in the total 
group, 10% (30 of 300) in exposed persons, and 4% (6 
of 150) in non-exposed persons.

The incidence rate, risk, relative risk and odds ratio 
are derived from the 2 x 2 table (Box).

A relative risk of 1 (RR = 1) means that exposed per-
sons (therapy A) and non-exposed persons (therapy B) 
have the same risk of falling ill (“being cured”). If RR 
is greater than 1, this means that exposed persons have 
a higher risk than non-exposed persons. If RR = 1.5, 
this means that the risk of exposed persons is 50% 
greater than that of non-exposed persons. If RR = 2, 
this means that the risk is doubled. In other words, the 
risk is increased by 100% or increased to 200%. If RR 
= 0.5, this means that persons in the exposed group 
only have half the risk of persons in the non-exposed 
group. This can also be referred to as a “protective fac-
tor.” It is important to bear in mind which groups are 
used as reference. If RR = 1.5 (for example, smokers 
versus non-smokers), this means that the risk is 
 increased by 50% for smokers. If smokers are used as 
the reference group, RR = 1/1.5 = 0.67. Thus, in com-
parison to smokers, the risk for non-smokers is reduced 
by one third (1 – 0.67 = 0.33).

Aside from the relative risk, the so-called odds ratio 
(OR) is often used as a measure of association (Box). 
The odds ratio is the quotient of the chances (odds) of a 
disease (cure) for persons with or without exposure 
(therapy).

The relative risk cannot be directly calculated for 
case control studies. The reason for this is that the ratio 
of cases to controls is laid down in the design, so that 
(a + c)/n is fixed by the investigator. It follows that 
neither a/(a + b) nor c/(c + d) is a useful parameter, as 
they do not represent the incidence rate. The relative 
risk cannot then be calculated. The odds ratio may be 
regarded as an auxiliary construct for the relative risk. 
The odds ratio and relative risk are of about the same 
numerical size when the probabilities of disease (P

1
 and 

P
0
) are both small. A value of 1% to 5% can still be re-

garded as small for these calculations. It should be re-
membered that the odds ratio and relative risk are of 
about equal size in only these cases. If the relative risk 
is greater than 1, the odds ratio is always slightly larger 
than the relative risk. In our case, RR = 2.50 and  OR = 
2.67. 

BOX

Measures of association  
in a 2 × 2 table
Plan and notation of a basic 2 x 2 table

  Disease present
  Yes (D +) No (D –)
Exposed Yes a b a + b
 No c d c + d
  a + c b + d n

Definitions
● Risk describes the probability of falling ill
● P

0
 = probability of falling ill for non-exposed persons

● P
1
 = probability of falling ill for exposed persons

● P
0
 = c / (c + d)

● P
1
 = a / (a + b)

Risk difference: RD = P
1
 – P

0
Relative risk, risk ratio: RR = P

1
/P

0

O
0
 = odds;  

for non-exposed persons: O
0
 = P

0
/(1 – P

0
)

O
1
 = odds for exposed persons; O

1
 = P

1
/(1 – P

1
)

OR = odds ratio = O
1
 / O

0
 = (P

1
 / [1 – P

1
]) / P

0
 / [1 – P

0
]) = 

 (a x d) / (b x c)
If (a + c)/n is “small,” RR and OR have similar values.
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Problem 1: Sample size, confidence interval, and p-value
Aside from the relative risk, many publications give the 
confidence interval and p-values to summarize the 
 association between two factors. A p-value is said to be 
statistically significant if it lies below the “magic” 
limit, which is often 5%. If the RR is fixed, the confi-
dence interval and the p-value depend on the sample 
size (Table 2). In our example, the estimated RR = 2.5, 
with a 95% confidence interval (CI) of 1.06–5.87. The 
test for an association between the two factors—the 
chi-square test for independence—gives a p-value of 
0.027. If the sample size is doubled (n = 900) or halved 
(n = 225), the estimate is unchanged. On the other 
hand, the confidence interval becomes narrower and 
the p-value smaller as n increases from 225 (p = 0.118) 
to 900 (p = 0.002). At n = 225, the value 1.00 is con-
tained in the confidence interval, so that the effect of 
exposure is not statistically significant. When interpret -
ing the p-value, the estimate of the relative risk, the 
sample size, and the confidence interval should be con-
sidered together. 

Problem 2: Effect of measurement error on the relative risk
We would like to show how an error in the classifi-
cation of exposed and non-exposed persons can 
 influence the result of the 2 x 2 table (Table 3). If we 
 assume that (only) 10% of all subjects are wrongly 
classified, an avarage of 30 exposed cases are wrongly 
classified as non-exposed subjects. Moreover, about 15 
non-exposed subjects are wrongly assigned to the 
 exposed group. We will assume that this error is inde-
pendent of the status of the disease (no differential mis-
classification). In this case, three exposed cases (10% 
of the 30 misclassifications) and one non-exposed case 
(4% of 15 persons, giving 0.6 case, rounded up to one 
case) are wrongly classified. Because of this measure-
ment error, the data in Table 3 gives RR = 2.03 (95% CI 
= 0.95–4.34, p-value = 0.061). The result is therefore 
“non-significant.” Thus we have shown that a misclas-
sification which is the same for cases and controls (a 
non-differential misclassification) leads to an under -
assessment of RR. It is however rarely justified to 
 assume that any misclassification is non-differential. It 
follows that it is in any case necessary to perform a 
 detailed investigation of the effect of potential 
measurement errors. 

Problem 3: Exposure in more than two steps
In the above case control study, the frequency of tea 
consumption was classified into three groups (never 
moderate, frequent) (1). We will extend our contingen-
cy table to a 2 x 3 table, with the exposure in three cat-
egories (Table 4). The risk of the high exposure group 
relative to non-exposed persons was 2.8 and relative to 
the low exposure group was 2.0. The influence of the 
exposure on the disease is more marked than in Table 1. 
If, however, a 2 x 2 chi-square test is (wrongly) applied 
to a 2 x 3 table, the association is no longer significant. 
In the 2 x 2 table, a 2 x 2 chi-square test  of indepen-
dence has only one degree of freedom, whereas it has 

two degrees of freedom in the 2 x 3 table. For a fixed 
level of significance, the critical value is greater in the 2 
x 3 table. However, with this procedure, the fact is 
 ignored that the three degrees of exposure are sequen-
tial (absent, low, high). A suitable test of trend should 
consider this sequence. What is important is that the 
categories should be fixed prior to the evaluation, on 
the basis of objective and biometric arguments. Be-
cause of the problems with multiple testing, it is totally 
unacceptable to perform retrospective “searching” to 
attain a smaller p-value (and a “significant” result) (8).

Problem 4: Categorization of continuous variables
Although exposure is frequently measured as a continu-
ous variable (i.e. a variable with many possible values, 
such as blood pressure), the evaluation is often based 
on categorical data (high, intermediate, low). There are 
many disadvantages in categorizing continuous vari-
ables by classifying class limits. Firstly, some of the 

TABLE 1

Presentation of the results of a hypothetical study in a 2 × 2 table

Total (% column)

Exposed

(% line)

Yes

No

Disease present
Yes (D+)

30 (10.0%) 
(83.3%)

6 (4.0%) 
(16.7%)

36 (8.0%)

No (D-)

270 (90.0%) 
(65.2%)

144 (96.0%) 
(34.8%)

414 (92.0%)

300 (66.7%)

150 (33.3%)

450

TABLE 2

Influence of the sample size N on the length of the 
 confidence interval and on the p-value

CI, confidence interval

N

225

450

900

RR

2.5

2.5

2.5

95% CI

0.75–8.37

1.06–5.87

1.37–4.57

p-Value

0.118

0.027

0.002

Interpretation

Non-significant

Significant

Highly significant

TABLE 3

Influence of a 10% classification error  
(non-differential misclassification) on the 2 ×2 table  
as in Table 1

E+

E–

D+

28 (9.8%)

8 (4.8%)

36 (8.0%)

D–

257 (90.2%)

157 (95.2%)

414 (92.0%)

285 (63.3%)

165 (36.7%)

450
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originally recorded information is not used. This loss is 
at its greatest if there are low numbers of cat-
egories—for example, a threshold for the classification 
as “high” or “low.” Moreover, the number of suitable 
categories and their limits must be specified. If cat-
egories are chosen for which the number of cases is too 
low, the estimate of the effect for these categories is un-
stable. If target variables are considered when specify-
ing the limits, this can lead to a marked overestimate of 
the effect and to false p-values. Altman et al. (1994) (9) 
have shown that there are a wide variety of problems 
associated with the popular “optimal” cut-off point ap-
proach, in which, depending on the data, different 
threshold values are examined for categorization as 
“high” or “low”. If many different cut-off points are 
considered, this greatly increases the error of the first 
type. In other words, a significant result is found, 

 although the factor investigated does not in fact in-
fluence the target variable. Instead of the assumed 
probability of error of 5%, multiple application of tests 
leads to a probability of error of almost 50% (9).

With continuous risk factors, it is better to estimate 
the dose-effect curve, rather than to perform categori -
zation (10). 

Problem 5: Influence of a third factor
Confounding and Simpson’s paradox—In many 
studies, the influence of exposure on a disease is in-
fluenced by an additional factor (Figure). We assume 
that the results given in Table 1 were recorded in a 
group of non-smokers. There are however also data for 
a second group (smokers) (Table 5). RR is greater than 
1 in both groups, so that the disease is more frequent 
after exposure.

If these groups are not considered in the evaluation, 
and the figures for the two groups are simply added, an 
estimate is obtained for the relative risk which is less 
than 1. This phenomenon is known as Simpson’s para-
dox. The reason for this is that the distribution of expo-
sure in the two groups is different, as is the risk of 
 disease. Thus, addition of the tables is not justified. 
However, when evaluating studies with several impor -
tant influencing factors, it is often not evident which 
factors should be considered in the analysis. The 
 association (or correlation) between the different in-
fluencing factors may be important here. Variables are 
known as confounders if they are correlated with both 
exposure and disease. The classical procedure for deal-
ing with categorical confounders is the so-called 
 Mantel-Haenszel statistic, based on stratification of the 
data according to the confounder variables. The 
 Mantel-Haenszel statistic is a weighted mean of the 
odds ratios for the individual categories, with the 
weights depending on their sizes. It is evident that this 
procedure can become highly complex if there are sev-
eral confounders. In particular, it may lead to some cat-
egories being occupied with only a few cases and 
 controls. Then modelling must be performed with 
 regression models. The logistic regression model has 
become the established approach in medicine for the 
simultaneous investigation of several factors influenc-
ing binary target variables.

TABLE 4

Classification of exposure into three categories

aChi-quare test of independence in 2 × 3 table;
b Test of trend with score values (0 – E–, 1 – E+ low, 2 – E+ high);

CI, confidence interval

a) Ordinal factor and resulting 2 × 3 table

E+ high

E+ low

E–

b) Results of different analyses

Summary of E+

Yes (see Tables 1 and 2)

No

E+ low vs. E –
E+ high vs. E –

E+ high vs. E+ low

D+

22 (11.0%)

8 (8.0%)

6 (4.0%)

36 (8.0%)

D–

178 (89.0%)

92 (92.0%)

144 (96.0%)

414 (92.0%)

RR

2.5

2.0
2.8

1.4

95% CI

1.06–5.87

0.72–5.59
1.14–6.61

0.64–2.98

200 (44,4%)

100 (22,2%)

150 (33,3%)

450

p-Value

0.027

0.058a

0.020b

FIGURE

Depiction of the influence of a potential confounder; if we investigate the association between grey hair and death, age is a logical 
 confounder. If another scientist were to investigate the association between age and death, he would certainly be amazed by the influence of 
grey hair
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Interaction—We have been assuming that the addi-
tional factor (here smoking) is not of primary interest, 
but influences the association between exposure and 
disease and must therefore be considered in the evalu-
ation. It is however often the case that we are not only 
interested in the effects of the individual factors on the 
disease, but also their combined effect. It is often 
 assumed in medical research that factors act multipli-
catively. This means that if two or more factors are 
present, the relative risk is calculated as the product of 
the individual relative risks. If the result of the study is 
very different from the calculated product, there is an 
interaction between the factors. Minor deviations are 
always observed in real studies. A test for interaction 
can be used to investigate whether the deviations are 
random or statistically significant.

In the present example, the variable “smoking” is 
also of interest as second factor. If exposure E is not 
considered, the calculated RR for smokers is 
(60/150)/(36/450) = 5.0 (Table 6a). Conversely, Table 
5b shows that the RR for exposure is 0.83, if the smok-
ing status is not considered. A multiplicative effect 
means that subjects who not only smoke but have also 
been exposed to E have an increased risk of 0.83 x 5.0 
= 4.15, in comparison to non-smokers without expo-
sure E.

Table 6b shows that the risk is in fact increased by 
the factor of (20/40)/(6/150) = 12.5. There is thus a 
deviation from multiplicativity, i.e., an interaction 
 between the two factors. The other publications contain 
more detailed discussions of this topic and present suit-
able methods for investigating interactions (11–13).

Discussion
Every publication of a clinical or epidemiological study 
should contain a simple descriptive presentation of the 
results (14). In many cases, the 2 x 2 table is a suffi-
ciently clear method to present the principle results. On 
the other hand, there are some catches in interpreting 
this apparently simple table. The reader of a scientific 
publication should be aware of these and make sure that 
the authors have drawn proper attention to possible 
problems.
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