
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/383973526

The Efficacy and Safety of Levosimendan in Patients with Advanced Heart Failure: An Updated Meta-Analysis of Randomized Controlled Trials

Article in American Journal of Cardiovascular Drugs · September 2024

SYSTEMATIC REVIEW

The Efficacy and Safety of Levosimendan in Patients with Advanced Heart Failure: An Updated Meta-Analysis of Randomized Controlled Trials

Ahmed Saad Elsaeidy¹ · Mohamed Abuelazm² · Ramy Ghaly³ · Youssef Soliman⁴ · Ahmed Mazen Amin⁵ · Mohamed El-Gohary³ · Salem Elshenawy⁶ · Amith Reddy Seri⁷ · Basel Abdelazeem⁸ · Brijesh Patel⁸ · Christopher Bianco⁸

Accepted: 19 August 2024 © The Author(s) 2024

Abstract

Background Intermittent ambulatory levosimendan administration has been shown in several small randomized controlled trials to benefit patients with advanced heart failure, preventing heart failure rehospitalization and mortality. We aim to investigate the totality of high-quality evidence regarding the efficacy and safety of intermittent levosimendan in advanced heart failure patients.

Methods Up to September 2023, we systematically reviewed the randomized controlled trials indexed in PubMed, Embase Cochrane, SCOPUS, and Web of Science. We used mean difference (MD) to estimate the continuous outcomes, and risk ratio (RR) for the dichotomous outcomes with a 95% confidence interval (CI), using the random-effects model. Ultimately, a trial sequential analysis was employed to enhance the reliability of our findings and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework for certainty leveling.

Results Fifteen randomized controlled trials with 1181 patients were included. Intermittent levosimendan was significantly associated with an improved left ventricular ejection fraction compared with placebo (MD 6.39 [95% CI 3.04–9.73], P = 0.002; $l^2 = 75$, P = 0.0005), with cumulative *z*-score of change after ≤ 1 week passing the monitoring boundaries, favoring the levosimendan, but did not cross the required information size. Additionally, levosimendan reduced the all-cause mortality rate (RR 0.60 [95% CI 0.40–0.90], P = 0.01; $l^2 = 9$, P = 0.36). However, we found no difference between levosimendan and placebo in all-cause rehospitalization rate (RR 0.75 [95% CI 0.46–1.22], P = 0.25; $l^2 = 70$, P = 0.04), event-free survival rate (RR 0.97 [95% CI 0.72–1.30], P = 0.84; $l^2 = 63$, P = 0.03), or any adverse event (RR 1 [95% CI 0.73–1.37], P = 1.00, $l^2 = 0\%$, P = 0.70).

Conclusion In patients with advanced heart failure, intermittent levosimendan significantly improved left ventricular ejection fraction, brain natriuretic peptide values, and all-cause mortality rate. Levosimendan use is not associated with a change in rehospitalization or event-free survival.

Registration PROSPERO identifier number (CRD42023487838).

Ahmed Saad Elsaeidy and Mohamed Abuelazm have equal contributions and are co-first authors.

Ahmed Saad Elsaeidy AhmedSaadElsaeidy@gmail.com

- ¹ Faculty of Medicine, Benha University, Benha, Egypt
- ² Faculty of Medicine, Tanta University, Tanta, Egypt
- ³ Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, USA

- ⁴ Faculty of Medicine, Assiut University, Assiut, Egypt
- ⁵ Faculty of Medicine, Mansoura University, Mansoura, Egypt
- ⁶ Faculty of Medicine, Alexandria University, Alexandria, Egypt
- ⁷ Department of Internal Medicine, McLaren Health Care/Michigan State University, Flint, MI, USA
- ⁸ Department of Cardiology, West Virginia University, West Virginia, USA

Key Points

Levosimendan significantly enhanced heart performance and lowered death rates in patients with severe heart failure.

Despite its benefits for heart function and survival, levosimendan did not reduce the frequency of hospital readmissions or overall survival without events.

The use of levosimendan did not lead to an increase in adverse side effects compared with placebo.

1 Introduction

Heart failure is a severe pandemic affecting an estimated 64 million individuals in 2017 [1]. The prevalence rate of heart failure ranges from 1 to 3%, and the lifetime risk of heart failure has increased to one in four individuals. The 1-year mortality risk associated with index diagnosis is 15-30%. Mortality risk is increased dramatically following acute heart failure hospitalization, at approximately 11% over the next 90 days post-discharge [2]. Moreover, the projected increase in heart failure prevalence from 2012 to 2030 is 46%, and the total cost is expected to rise from \$30.7 billion to \$69.8 billion (US dollars) between 2012 and 2030 [3, 4]. The current guideline-directed medical therapy (GDMT) aims to reduce heart failure mortality and hospitalizations [5]. However, targeted interventions decreasing morbidity and mortality during the vulnerable post-discharge period are still lacking [6].

Levosimendan is an inodilator calcium-sensitizing agent with the following effects: (1) inotropic effect via increasing troponin C sensitivity to calcium without increasing intracellular calcium, (2) vasodilator effect via opening potassium channels in vasculature smooth muscles, and (3) cardioprotection against ischemia via the activation of potassium channels in cardiac mitochondria. It is also postulated that levosimendan possesses cardioprotective properties as a calcium sensitizer offering a neutral effect on myocardial oxygen consumption and modulating a favorable oxidative balance [7]. These properties may lead to protection against arrhythmias and cardiac remodeling [8], as opposed to inotropic agents that increase myocardial oxygen demand and promote arrhythmias [9].

The hemodynamic effects of intravenous (IV) levosimendan encompass a dose-dependent stroke volume and cardiac output elevation while cardiac filling pressures are reduced [10]. Finally, the neurohormonal effects of IV levosimendan include a reduction in natriuretic peptides, interleukin-6, and high-sensitivity C-reactive protein (hs-CRP) [11–13].

Levosimendan is available in Europe and South America but is not approved in the USA. IV inotropes (e.g., dobutamine and milrinone) are largely limited to inpatient settings and palliative efforts due to studies suggesting increased mortality and lack of improved clinical outcomes with long-term use [14]. Furthermore, although milrinone may exert favorable hemodynamic effects, short-term use did not improve cumulative days of hospitalization for cardiovascular cause or mortality within 60 days of administration [15]. A great unmet need exists to improve outcomes in high-risk heart failure patients; levosimendan may meet that need. However, evidence is sparse regarding the clinical benefits of intermittent levosimendan use, with several randomized controlled trials (RCTs) investigating its potential effect on advanced heart failure outcomes [6, 11, 13, 16–27].

To thoroughly evaluate the existing evidence, this systematic review and meta-analysis investigates levosimendan's efficacy and safety in advanced heart failure management.

2 Methods

2.1 Registration

The PROSPERO registration ID of this study is (<u>CRD42023487838</u>). We conducted this study following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [28] and the Cochrane Handbook for Systematic Reviews and Meta-Analyses [29].

2.2 Data Sources and Search Strategy

A.S.E. and B.A. conducted a comprehensive search across multiple databases including PubMed, SCOPUS, CEN-TRAL, Web of Science, and Embase, without imposing any restrictions, until September 2023. Further information regarding the search methodology is detailed in Table S1 (see the electronic supplementary material).

2.3 Eligibility Criteria

We included RCTs that met our predefined criteria: population (P) consisted of advanced chronic heart failure patients; intervention (I) involved the administration of levosimendan, regardless of the treatment regimen; comparison (C) was standard of care without levosimendan administration or placebo. Outcomes (O) were as follows: our primary outcome was the change in left ventricular ejection fraction (LVEF), while secondary outcomes were event-free survival/time to first hospitalization, change in brain natriuretic peptide (BNP), all-cause rehospitalization, all-cause mortality, hypotension, and any adverse event.

2.4 Study Selection

A.M.A., A.R.S., S.E., and M.E. conducted individual screening of titles and abstracts using Covidence. After duplicate removal, the four reviewers independently screened the full texts according to our eligibility criteria. Any conflicts were resolved by consensus.

2.5 Data Extraction

A.M.A., S.E., M.E., and A.R.S. independently conducted data extraction from the included trials using Excel sheets. Any discrepancies were resolved through consensus. This sheet encompassed the following: (1) a summary section (including study design, country, total participants, inclusion and exclusion criteria, details of levosimendan prescription, and follow-up period); (2) baseline characteristics (such as gender, age, body mass index, medical history including diabetes, hypertension, coronary artery disease, and clinical parameters); and (3) study outcomes (including event-free survival/time to first event, change in BNP, change in LVEF, all-cause mortality, all-cause rehospitalization, hypotension, and any adverse events). Conflicts were resolved through consensus.

2.6 Risk of Bias and Certainty of Evidence

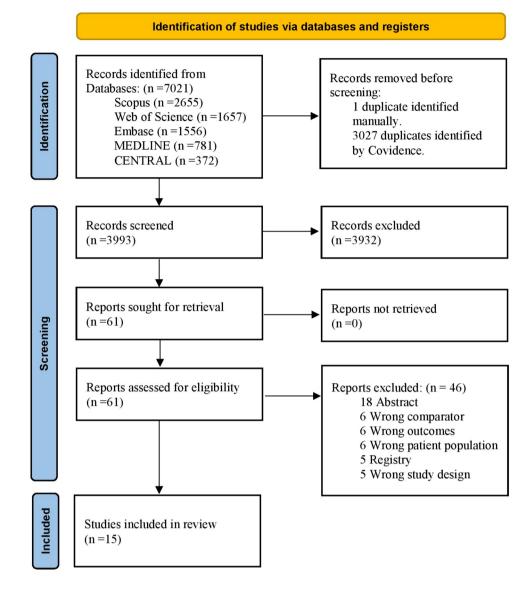
A.M.A., S.E., M.E., and A.R. used ROB-II to assess the quality of the included studies. ROB-II investigates the risk of bias according to five domains (randomization, deviations from intended interventions, missing outcome data, outcome measurement, and selection of the reported result). Any conflict was handled through discussion or by inviting A.S.E. to make a final decision [30]. Furthermore, M.A. applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) guidelines to appraise the quality of evidence [31, 32].

2.7 Statistical Analysis

We used Review Manager (RevMan) software to pool the data of the included trials [33]. We calculated the risk ratio (RR) for the dichotomous outcomes and mean difference (MD) for the continuous outcomes, along with a 95% confidence interval (CI). To handle differences in the study settings and participant demographics, we used a random-effects model to address potential heterogeneity [34]. To determine between-study variance (tau-squared) within the random-effects model, we applied the DerSimonian and Laird method. We assessed heterogeneity using the

 I^2 statistic, which gauges the part of total variability due to heterogeneity instead of random chance. As per the Cochrane Handbook [35], the Chi-squared test was evaluated as significant heterogeneity if the alpha level was less than 0.1, while the I^2 test was interpreted as follows: not significant was indicated by 0-40%, moderate heterogeneity was indicated by 30-60%, and substantial heterogeneity was indicated by 50-90% [35]. We carried out a leave-one-out sensitivity analysis to assess the robustness of the pooled results. Also, leave-one-out analysis is useful to investigate the influence of each study on the overall effect-size estimate and to identify influential studies. If the P value was less than 0.05, the total effect size was regarded as statistically significant. Furthermore, considering the relatively small number of studies included in some outcomes and to improve the reliability of our results, we implemented a trial sequential analysis (TSA) to balance type I and type II errors and provide an estimate of when the effect size would be substantial enough to withstand the impact of additional studies [36, 37].

3 Results


3.1 Search Results and Study Selection

Initially, 7021 records were identified after extensive searches across databases. Following removal of duplicate entries, 3993 studies were deemed eligible for title and abstract screening. Among these, 3932 studies were excluded as they did not align with our research objectives. Subsequently, 61 articles underwent full-text screening. Ultimately, we included 15 eligible RCTs [6, 11, 13, 16–27]. Figure 1 illustrates the PRISMA flow diagram.

3.2 Baseline Characteristics

Fifteen eligible RCTs involving 1181 patients were included [6, 11, 13, 16–27]. The levosimendan treatment regimen varied significantly among the trials, as outlined in Table 1. Treatment duration and follow-up periods ranged from 24 h to 12 months. Approximately 76% of the enrolled patients were males, with mean ages spanning from 50.2 to 80.8 years. Also, about 51.4% of the included patients had a history of hypertension, and 18.5% had a history of coronary disease, with a mean LVEF range from 20 to 33.4%. Additional baseline characteristics of the enrolled participants are provided in Table 2. Moreover, Table S2 in the electronic supplementary material provides detailed inclusion and exclusion criteria of the trials.

Fig. 1 PRISMA flow chart of the screening process. *PRISMA* Preferred Reporting Items for Systematic Reviews and Meta-Analysis

3.3 Risk of Bias and Certainty of Evidence

ROB-II revealed that only one study exhibited a high risk of bias, while four studies exhibited a low risk of bias. Conversely, the others raised some concerns of bias across various domains (Fig. 2). The evidence certainty level is elaborated in a GRADE framework profile in Table 3. Across the included trials, there was a very low level of certainty for all pooled outcomes, except for all-cause mortality, which was assessed to have a low certainty level.

3.4 Primary Outcomes: LVEF

Levosimendan demonstrated a statistically significant enhancement in LVEF compared with placebo (MD 6.39 [95% CI 3.04–9.73], $I^2 = 75\%$) (Fig. 3A). Excluding Zhang et al. 2015 from the subgroup analysis for the \leq 1-week revealed a consistent statistically significant difference between the study groups (MD 4.09 [95% CI 1.41–6.67], I^2 = 27%) (Table S3, see the electronic supplementary material). A TSA for LVEF change at ≤ 1 week declared that the cumulative z-curve surpassed the traditional and TSA boundaries, establishing sufficient and conclusive evidence (Fig. 3B).

3.5 Secondary Efficacy Outcomes

Levosimendan was associated with a significant decrease in all-cause mortality compared with placebo (RR 0.60 [95% CI 0.40–90], $I^2 = 9\%$) (Fig. 4). Additionally, levosimendan demonstrated a significant reduction in BNP level (SMD –0.42 [95% CI –0.74 to –0.09], $I^2 = 0\%$) without any heterogeneity (Fig. 5A). A TSA for BNP change at ≤ 1 week

Table 1 Summary of the included studies

Study ID	Country	Study design	Sample size	Levosimendan do	sage		Follow-up
				Bolus dose	Maintenance dose	Treatment duration	duration
Pölzl et al. 2023 [6]	Austria	RCT	148	No bolus dose	6-h infusion: 0.2 μg/kg/min over 6 h every 2 weeks for 12 weeks	12 weeks	180 ± 14 days
					24-h infusion: 0.1 μg/kg/min over 24 h every 3 weeks for 12 weeks		
García-González et al. 2021 [16]	Spain	RCT	97	No bolus dose	0.1 μg/kg/min, IV over 24 h once every 30 days	12 months	12 months
Cui et al. 2020 [26]	China	RCT	49	12 μg/kg, IV for 10 min	0.1 μg/kg/min, IV over 24 h	24 h	1 month
Comín-Colet et al. 2018 [25]	Spain	RCT	69	No bolus dose	0.2 μg/kg/min, IV over 6 h	12 weeks	25 weeks
Zhang et al. 2015 [24]	China	RCT	42	12 μg/kg, IV for 10 min	0.1 μg/kg/min, IV over an hour. Then, 0.2 μg/ kg/min, IV over 23 h	24 h	4 weeks
Shah et al. 2014 [23]	India	RCT	50	12.5 mg/mL, IV	200 μg/kg dose in 50 mL of normal saline at the rate of 2 mL/h for 24 h, IV	24 h	2 months
Altenberger et al. 2014 [27]	Austria, Greece, and Germany	RCT	120	No bolus dose	0.2 μg/kg/min, IV over 6 h Four cycles of levosimendan at 2-week intervals	6 weeks	18 weeks
Llorens et al. 2012 [19]	Spain	RCT	45	In patients with SBP > 120 mmHg: 6 µg/ kg, IV for 10 min In patients with SBP = 90: 120 mmHg: No bolus dose	0.1 µg/kg/min, IV over 24 h In patients who experienced a decline of SBP below 90 mmHg, the dose was reduced by half, and nitroglycerin tapered gradually to withdrawal if necessary	24 h	6 months
Kurt et al. 2010 [17]	Turkey	RCT	60	12 μg/kg, IV for 10 min	0.1 μg/kg/min, IV over 24 h	24 h	NA
Nieminen et al. 2008 [21]	Finland, Estonia, Latvia, Lithuania, and Russia	RCT	307	No bolus dose	LS-1: 1-mg capsule once daily LS-2: 1-mg capsule twice daily	180 days	180 days

 Table 1 (continued)

Study ID	Country	Study design	Sample size	Levosimendan do	sage		Follow-up
				Bolus dose	Maintenance dose	Treatment duration	duration
Mavrogeni et al. 2007 [20]	Greece	RCT	50	6 μg/kg, IV for 10 min	0.1 µg/kg/min, IV over an hour. Then, 0.2 µg/ kg/min, IV over 23 h	8 months	6 months
Parissis et al. 2007 [22]	Greece	RCT	63	No bolus dose	0.1 μg/kg/min, IV over 24 h	24 h	NA
Lilleberg et al. 2007 [18]	Finland	RCT	22	12 μg/kg, IV for 10 min	0.1 μg/kg/min, IV over an hour. Then, 0.2 μg/ kg/min, IV over 23 h	25 h	14 days
Parissis et al. 2006 [11]	Greece	RCT	25	6 μg/kg, IV for 10 min	0.1 µg/kg/min, IV over an hour. Then, 0.4 µg/ kg/min, IV over 23 h	15 weeks (5 repetitive infusions)	1 month
Parissis et al. 2005 [13]	Greece	RCT	34	6 μg/kg, IV for 10 min	0.1 µg/kg/min, IV over an hour. Then, 0.4 µg/ kg/min, IV over 23 h	24 h	5 months

IV intravenous, *LS-1* 1-mg capsule of levosimendan once daily group, *LS-2* 1-mg capsule of levosimendan twice daily group, *NA not available, RCT* randomized controlled trial, *SBP* systolic blood pressure

declared that the *z*-curve surpassed the traditional and TSA boundaries, establishing sufficient and conclusive evidence (Figure S1, see the electronic supplementary material).

However, no significant difference was observed between levosimendan and placebo in terms of event-free survival (RR 0.97 [95% CI 0.72–1.30], $I^2 = 63\%$) (Fig. 5B). Subgroup analysis was also done according to the time point; all subgroups had no significant differences (Figure S2). Heterogeneity in the 5-month subgroup was resolved by excluding the study Parissis et al. (2005) ($I^2 = 32\%$, P =0.23), and the results remained insignificant (RR 1.34 [95% CI 0.92-1.95]) (Table S4). Furthermore, no distinction was found between levosimendan and placebo concerning all-cause rehospitalization (RR 0.75 [95% CI 0.46-1.22], $I^2 = 70\%$) (Fig. 5C). Subgroup analysis was consistent according to the time points, with no significant difference in all subgroups (Figure S3). Heterogeneity in the 6-month subgroup was resolved by excluding the study Llorens et al. (2012) ($I^2 = 0\%$), and the results became statistically significant (RR 0.54 [95% CI 0.37-0.79]) (Table S5).

3.6 Safety Outcomes

While levosimendan did not show an overall elevated risk of any adverse events (RR 1 [95% CI 0.73–1.37], $I^2 = 0\%$) (Fig. 6A), it was associated with a statistically significant

increase in the risk of hypotension (RR 2.01 [95% CI 1.06–3.82], $I^2 = 0\%$) (Fig. 6B). There was no statistically significant difference in tachycardia events between groups (RR 0.86 [95% CI 0.38–1.96], $I^2 = 3\%$) (Fig. 6C). Additionally, the requirement for renal replacement therapy/dialysis was investigated by Shah et al. 2014, with an event rate of 16% observed in both groups.

4 Discussion

The key findings are summarized as follows: (1) intermittent levosimendan is associated with a statistically significant increase in LVEF; (2) levosimendan is associated with a statistically significant reduction in BNP; (3) levosimendan is associated with a statistically significant reduction in allcause mortality; (4) levosimendan is not associated with a reduction in all-cause rehospitalization; (5) levosimendan is not associated with increased adverse events apart from hypotension.

Ambulatory use of intermittent levosimendan in advanced heart failure is under investigation. Advanced heart failure patients often tolerate GDMT with diseasemodifying drugs poorly. Tomasoni et al. demonstrated that a minority of advanced heart failure patients in the HELP-HF registry were able to tolerate target doses of GDMT

Study ID	General characteristics	teristics					Medical history	y				
	Sex (male)		Age (years)		BMI		Hypertension		Diabetes		Coronary disease	se
	Levosimendan Placebo	Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo	n Placebo	Levosimendan Placebo	Placebo	Levosimendan Placebo	Placebo	Levosimendan Placebo	Placebo
Pölzl et al. 2023 [6]	72 (77.5)	41 (78.8)	69.3 ± 9.6	67.8 ± 10.1	26.9 ± 4.9	29.6 ± 5.8	59 (63.4)	33 (63.5)	38 (40.9)	26 (50.0)	NA	NA
Cui et al. 2020 22 (85) [26]		19 (83)	50.2 ± 13.4	54.4 ± 13.2	NA	NA	9 (34.6)	11 (47.8)	5 (19.2)	7 (30.4)	4 (15.4)	9 (39.1)
Shah et al. 2014 [23]	15 (60)	16 (64.0)	59.9 ± 8.8	61.3 ± 7.6	NA	NA	18 (72)	20 (80)	16 (64.0)	13 (52.0)	NA	NA
Zhang et al. 2015 [24]	10 (48)	10 (48)	74.8 ± 4.5	74.5 ± 4.3	NA	NA	8 (38)	7 (33)	5 (25)	6 (29)	8 (38)	8 (38)
Altenberger et al. 2014 [27]	50 (79)	45 (79%)	69.5 ± 11.5	69.5 ± 10.5	AN	NA	36 (57.1)	37 (64.3)	22 (34.9)	24 (42.9)	39 (61.9)	32 (57.1)
Kurt et al. 2010 [17]	17 (54.8)	17 (58.6)	63.3 ± 11.9	64.87 ± 10.4	NA	NA	9 (29)	12 (41.4)	9 (29)	6 (20.7)	NA	NA
Nieminen et al 2008 [21]	Nieminen et al. LS-1: 77 (75) 2008 [21] LS-2: 84 (82)	86 (84)	LS-1: 65 ± 10 63 ± LS-2: 62 ± 12) 63 ± 1	LS-1: 28 ± 5.230 ± 5.7 LS-2: 29 ± 5.4	230 ± 5.7	LS-1: 71 (70) 63 (62) LS-2: 64 (62)	63 (62)	LS-1: 27 (27) LS-2: 24 (23)	23 (23)	LS-1: 61 (60) 64 (63) LS-2: 64 (62)	64 (63)
García- González et al. 2021 [16]	62 (88.6)	20 (74.1)	68.1 ± 11.1	71.33 ± 9	NA	NA	47 (67.1)	17 (63)	36 (51.43)	14 (51.9)	33 (47.1)	13 (48.2)
Mavrogeni et al. 2007 [20]	20 (80)	20 (80)	62 ± 20	61 ± 19	AN	NA	AN	NA	NA	NA	NA	NA
Parissis et al. 2007 [22]	35 (83.3)	17 (81)	65 ± 8	66 ± 8	NA	NA	NA	NA	NA	NA	NA	NA
Lilleberg et al. 11 (100) 2007 [18]		7 (63.6)	55 ± 9	55 ± 8	NA	NA	NA	NA	NA	NA	5	2
Comín-Colet et al. 2018 [25]	41 (85.4)	16 (76)	68 ± 10	63 ± 9	27 ± 4	27 ± 5	32 (67)	13 (62)	24 (50)	11 (52)	NA	VA
Parissis et al. 2006 [11]	16 (94.1)	7 (87.5)	67 ± 6	70 ± 8	NA	NA	NA	NA	NA	NA	NA	NA
Parissis et al. 2005 [13]	16 (94.1)	15 (82.3)	66±5	68 ± 5	NA	NA	NA	NA	NA	NA	NA	NA

 Table 2
 Baseline characteristics of the included studies

Table 2 (continued)	tinued)											
Study ID	General characteristics	racteristics					Medical history	y				
	Sex (male)		Age (years)		BMI		Hypertension		Diabetes		Coronary disease	se
	Levosimend	Levosimendan Placebo	Levosimendan Placebo	n Placebo	Levosimendan Placebo	Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo		Levosimendan Placebo	Placebo
Llorens et al. 2012 [19]	6 (24)	7 (35)	80.8 ± 7.9	77.6 ± 9.9	NA	NA	24 (96)	17 (85)	14 (56)	7 (35)	5 (20)	4 (20)
Study ID	Clinical parameters	meters										
	LVEF		Heart rate (bpm)	(mq	SBP (mm Hg)	_	DBP (mm Hg)		NYHA functional class	onal class	NT-proBNP (pg/mL)	g/mL)
	Levosimendan Placebo	an Placebo	Levosimendan Placebo	an Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo	Placebo
Pölzl et al. 2023 [6]	24 ± 5	24 ± 5	69 ± 20.7	66.4 ± 22.4	101.3 ± 28.7	101.3 ± 28.7 101.4 ± 29.1 NA	NA	NA	II: 4 (4.3) IIa: 59 (63.4) IIIb: 26 (28.0) IV: 4 (4.3)	II: 4 (4.3) II: 5 (9.6) IIa: 59 (63.4) IIIa: 29 (55.8) IIIb: 26 (28.0) IIIb: 17 (32.7) IV: 4 (4.3) IV: 1 (1.9)	5330.3 ± 5106.3	5290.3 ± 4511.4
García- González et al. 2021 [16]	24.6 ± 7.9	26 ± 9.9	NA	NA	NA	NA	NA	NA	III: 64 (91.43) III: 25 (92 IV: 5 (7.14) IV: 1 (3.7)	III: 64 (91.43) III: 25 (92.59) 7963 ± 1564.314232 ± 5373 IV: 5 (7.14) IV: 1 (3.7)	7963 ± 1564.3	14232 ± 5373
Cui et al. 202030.2 ± 7.2 [26]	030.2 ± 7.2	33.4 ± 4.7	86.2 ± 13.1	82.7 ± 16.6		$121.9 \pm 14.51 \ 126.7 \pm 24.55 \ 80.4 \pm 11.91$	80.4 ± 11.91	83.7 ± 14.9	III: 14 (53.8) IV: 12 (46.2)	III: 12 (52.2) IV: 11 (47.8)	4715.6 ± 6881.2	4380.4 ± 4350.1
Comín-Colet et al. 2018 [25]	27 ± 9	25 ± 6	73 ± 12	74 ± 13	114 ± 17	107 ± 10	AN	NA	II: 46 (96) IV 2 (4)	II: 19 (91) IV: 2 (9)	5678 ± 4847	5419 ± 5331
Zhang et al. 2015 [24]	30.6 ± 6	30.9 ± 6.3	115 ± 53	117 ± 56	133 ± 49	132 ± 47	86 ± 24	185 ± 24	I: II 0 0 III: IV 21	I–II: 0 0 III–IV: 21	2895.7 ± 1497.5	2910.5 ± 1490.4
Shah et al. 2014 [23]	22.5 ± 4.1	22.6 ± 3.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Altenberger et al. 2014 [27]	24 ± 5	24 ± 5	73 ± 12	73 ± 12	120 ± 14	120 ± 18	AN	NA	IIIb: 61 (96.8) IV: 2 (3.2)	IIIb: 61 (96.8) IIIb: 53 (92.9) 3230.7 IV: 2 (3.2) IV: 4 (7.1) \pm 295	3230.7 ± 2955.1	3593 ± 1172.3
Llorens et al. 2012 [19]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5482 ± 4711	5988 ± 6027
Kurt et al. 2010 [17]	25.4 ± 4.3	25.4 ± 4.5	93.8 ± 23	96.6 ± 23.7	128.3 ± 20.6	116.3 ± 21.3	71.1 ± 10.7	78.8 ± 20.2	III: 21 (72.4) IV: 8 (27.6)	III: 24 (80) IV: 6 (20)	NA	NA
Nieminen et al. 2008 [21]	LS-1: 25 ± 4.925 ± 4.9 LS-2: 25 ± 5.3	.925 ± 4.9 .3	LS-1: 75 ± 13 78 ± LS-2: 74 ± 12	13 78 ± 13 12	LS-1: 123 ± 18 LS-2: 124 ± 17	124 ± 15	NA	Ч	LS-1: IIIB: 4 (82) IV: 18 (18) LS-2: IIIB: 6 (93) IV: 7 (7)	IIIB: 87 (85) IV: 15 (15)	LS-1: 7557 ± 6680 LS-2: 5414.3 ± 4961.7	LS-1: 7557 ± 5809.3 ± 6489 6680 LS-2: 5414.3 ± 4961.7

Study ID	Clinical parameters	ameters										
	LVEF		Heart rate (bpm)	(udc	SBP (mm Hg)	g)	DBP (mm Hg)	Ig)	NYHA functional class		NT-proBNP (pg/mL)	g/mL)
	Levosimendan Placebo	an Placebo	Levosimendan Placebo	lan Placebo	Levosimendan Placebo	an Placebo	Levosimendan Placebo	an Placebo	Levosimendan Placebo	1 Placebo	Levosimendan Placebo	Placebo
Mavrogeni et al. 2007 [20]	22 ± 6	22 ± 5	78 ± 13	80 ± 13	NA	NA	NA	NA	III or IV: 25 (100)	III or IV: 25 III or IV: 25 NA (100) (100)	NA	NA
Parissis et al. 23 ± 6 2007 [22]	23 ± 6	22 ± 5	83 ± 15	86 ± 17	99 ± 11	100 ± 12	NA	NA	3.3 ± 0.7	3.4 ± 0.6	NA	NA
Lilleberg et al. 25 ± 5 2007 [18]	l. 25 ± 5	28 ± 6	63 ± 9	66 ± 10	116 ± 11	125 ± 17	71 ± 8	74 ± 9	NA	NA	8524.7 ± 8862.9	5353.3 ± 4702.1
Parissis et al. 22 ± 4 2006 [11]	22 ± 4	23 ± 4	74 ± 9	73 ± 8	117 ± 14	110 ± 15	73 ± 8	71 ± 8	III: 7 (41.1) III: 4 (50%) IV: 10 (58.9) IV: 4 (50%)	III: 4 (50%) IV: 4 (50%)	1547 ± 347	1302 ± 302
Parissis et al. 20 ± 5 2005 [13]	20 ± 5	23 ± 6	NA	NA	103 ± 13	109 ± 13	65 ± 8	68 ± 6	3.7 ± 0.5	3.5 ± 0.5	NA	NA
Data are repo	rted as n (%) c	Data are reported as n (%) or mean \pm SD										

Table 2 (continued)

BMI body mass index, DBP diastolic blood pressure, L5-1 1-mg capsule of levosimendan once daily group, L5-2 1-mg capsule of levosimendan twice daily group, LVEF left ventricular ejection fraction, NA not available, NT-proBNP N-terminal-pro-B-type natriuretic peptide, NYHA New York Heart Association, SBP systolic blood pressure [38]. The American Heart Association (AHA)/American College of Cardiology (ACC)/Heart Failure Society of America (HFSA) recommend against ambulatory use of IV inotropic agents such as dobutamine and milrinone, except in palliative care or bridging to advanced therapy settings due to lack of survival benefit [14, 39, 40]. Novel agents such as the myosin activator omecamtiv mecarbil were developed as adjunct therapies to reduce severe heart failure patient risk. However, the Food and Drug Administration (FDA) declined approval due to lack of survival benefit [41]. A great unmet need exists for a therapeutic option to prevent disease progression, decrease hospitalizations, lower mortality, and enhance the quality of life in advanced heart failure patients. Given its distinct mechanism of action as an inodilator calcium-sensitizing agent with cardioprotective properties, intermittent ambulatory levosimendan holds promise for enhancing cardiovascular outcomes and improving quality of life in advanced heart failure patients.

Despite mixed evidence in several relatively small RCTs, our findings suggest that intermittent levosimendan may improve cardiovascular outcomes in heart failure patients, primarily by reducing all-cause mortality. These positive clinical outcomes might stem from improving hemodynamic and neurohormonal profiles, as manifested by increased LVEF and reduced natriuretic peptides in our results. Our results align with a study including eight RCTs and seven observational studies, which showed decreased cardiovascular mortality, improved New York Heart Association (NYHA) class, and health-related quality of life with ambulatory levosimendan use; however, that study was limited by heterogeneity and the small size of included studies [42]. In keeping with our findings, Cui et al. (2021) also found that levosimendan reduced BNP levels and increased LVEF in patients with advanced heart failure [43]. Moreover, the RELEVANT-HF registry, designed to acquire real-world data for patients with advanced heart failure receiving levosimendan, also demonstrated that patients experienced a shorter length of hospital stay in the 6 months following the initiation of treatment compared with the 6 months prior to treatment [43].

Levosimendan may also exert a positive impact on the pulmonary circulation and the right ventricle, which can contribute to improved cardiovascular outcomes. A systematic review and meta-analysis involving 390 patients showed a significant increase in right ventricular (RV) fractional area change, tricuspid annular plane systolic excursion, and tricuspid annular peak systolic velocity and a significant decrease in pulmonary pressures with levosimendan use [44]. These findings are of particular importance in the advanced heart failure population that may seek durable left ventricular assist device (LVAD) options, as up to 24%

				Risk of bia	s domains	6	
		D1	D2	D3	D4	D5	Overall
	Pölzl et al 2023 (LeoDOR)	+	+	+	+	+	+
	Cui 2020	-	-	+	+	+	-
	Shah 2014	-	-	+	+	+	-
	Zhang 2015	-	-	+	+	+	-
	Altenberger et al 2014 (LevoRep)	+	+	+	+	+	+
	Kurt 2010	-	-	+	+	+	-
	Nieminen 2008	-	+	+	+	+	-
Study	García-González et al 2021 (LAICA)	+	+	+	+	+	+
	Mavrogeni et. al 2007	+	-	+	+	-	-
	Parissis et. al 2007	X	-	+	+	-	X
	Lilleberg et. al 2007	-	-	+	+	-	-
	Comin-Colet et. al 2018	+	+	+	+	-	-
	Parissis et. al 2006	-	+	+	+	-	-
	Parissis et. al 2005	-	+	+	+	-	-
	Llorens et. al 2012	+	+	+	+	+	+
		D2: Bias du D3: Bias du D4: Bias in	ue to deviation ue to missing measurement	the randomiza ons from inter o outcome da ont of the out the reported	nded interve Ita. come.	ntion. 💙 H - S	nent ligh ome concerns ow
	Bias arising from the randomization process						
Bias d	ue to deviations from intended interventions						
	Bias due to missing outcome data						
	Bias in measurement of the outcome						
	Bias in selection of the reported result						
	Overall risk of bias						
		0%	25%	50)%	75%	100%
			Low	risk Sor	me concerns	High risk	

Fig. 2 Quality assessment of risk of bias in the included trials. The upper panel presents a schematic representation of risks (low=green, unclear=yellow, and high=red) for specific types of biases of each

study in the review. The lower panel presents risks (low=green, unclear=yellow, and high=red) for the subtypes of biases of the combination of studies included in this review

스 Adis

Table 3 GRADE evidence profile

Certainty assessment						
Participants (studies) Follow-up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall certainty of evidence
LVEF change						
323 (7 RCTs)	Serious ^a	Very serious ^b	Not serious	Very serious ^c	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
All-cause mortality						-
636 (7 RCTs)	Serious ^a	Not serious	Not serious	Serious ^d	None	$\underset{\text{Low}}{\bigoplus} \bigcirc \bigcirc$
BNP change						
157 (3 RCTs)	Serious ^a	Not serious	Not serious	Very serious ^c	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
Event-free survival						
465 (5 RCTs)	Serious ^a	Serious ^e	Not serious	Very serious ^d	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
All-cause re-hospitalizat	tion					
260 (4 RCTs)	Serious ^a	Serious ^e	Not serious	Very serious ^d	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
Any adverse event						
462 (7 RCTs)	Serious ^a	Not serious	Not serious	Very serious ^d	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
Hypotension						
327 (5 RCTs)	Serious ^a	Not serious	Not serious	Very serious ^d	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$
Tachycardia						
463 (4 RCTs)	Serious ^a	Not serious	Not serious	Very serious ^d	None	$\bigoplus_{\text{Very low}} \bigcirc \bigcirc$

BNP brain natriuretic peptide, CI confidence interval, GRADE Grading of Recommendations Assessment, Development, and Evaluation, LVEF left ventricular ejection fraction, RCT randomized controlled trial

^aAll the included trials showed an overall some concerns of bias

 ^{b}I -squared > 75%

^cA wide CI that does not exclude the appreciable harm/benefit, with total participants less than 400

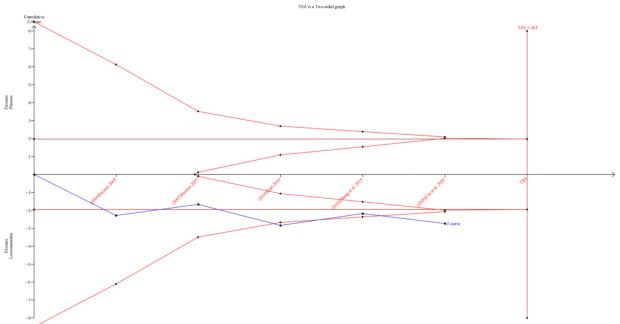
^dA wide CI that does not exclude the appreciable harm/benefit, with low number of events

 $e_{I-squared} > 50\%$

develop right heart failure following LVAD implantation, leading to worse cardiovascular outcomes [45].

Furthermore, there is evidence that levosimendan improves long-term kidney function in patients with advanced heart failure. Studies showed increased glomerular filtration rate and decreased creatinine with levosimendan use [46–48]. This effect may be explained by favorable cardiac effects or potential extra-cardiac mechanisms. That said, Shah et al. failed to demonstrate a reduction in the need for renal replacement therapies with the use of levosimendan.

Our results suggest that levosimendan is well tolerated in patients with advanced heart failure with no increased risk of adverse events apart from an increase in hypotensive events. However, increased hypotension with levosimendan did not correspond to a rise in all-cause mortality. Despite its inotropic properties, levosimendan did not exhibit a significant increase in tachycardic events in our results. This finding can be explained within the context that levosimendan does not increase intracellular calcium or oxygen consumption, leading to less likely ventricular arrhythmias during treatment [49]. We may demonstrate that intermittent ambulatory levosimendan use leads to improvements in LVEF, BNP, and all-cause mortality without an increased hazard of overall adverse events.


However, this study cannot demonstrate the risk-benefit ratio of intermittent levosimendan for patients with advanced heart failure as there was not enough data to pool and discuss the whole safety profile of the treatment (Table S6, see the electronic supplementary material).

A- Forest Plot of LVEF Change

	Expe	erimen	tal	Co	ontro	I		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 ≤ 1 week									
Cui et al. 2020	8.66	11.5	26	1.22	7.2	23	13.2%	7.44 [2.13, 12.75]	
Kurt 2010	2.9	4.3	31	0.4	4.6	29	18.2%	2.50 [0.24, 4.76]	
Parissis 2005	7	8.6	17	0	9.2	17	12.1%	7.00 [1.01, 12.99]	_
Parissis 2007	3	9.22	42	1	8.6	21	14.4%	2.00 [-2.62, 6.62]	- +
Zhang et al. 2015 Subtotal (95% CI)	15.19	8	21 137	-0.25	8.9	21 111	13.5% 71.5%	15.44 [10.32, 20.56] 6.64 [1.90, 11.38]	
Heterogeneity: Tau ² =	= 23 41 1	Chi² = 1		df = 4 P	= 0 1				-
Test for overall effect				ui – 4 (i	- 0.0		- 05 %		
1.5.2 At 1 month									
Parissis 2006	4	6.4	17	-1	5.7	8	13.8%		
Subtotal (95% CI)			17			8	13.8%	5.00 [0.01, 9.99]	-
Heterogeneity: Not a									
Test for overall effect	: Z = 1.97	? (P = 0).05)						
1.5.3 6 months									
Mavrogeni 2007	6	9.22	25	-1	6.4	25			-
Subtotal (95% CI)			25			25	14.8%	7.00 [2.60, 11.40]	\bullet
Heterogeneity: Not a									
Test for overall effect	: Z = 3.12	2 (P = 0).002)						
Total (95% CI)			179			144	100.0%	6.39 [3.04, 9.73]	◆
Heterogeneity: Tau² =	= 14.67; •	Chi² = :	24.35, (df = 6 (P	= 0.0	0005);1	₽=75%		-20 -10 0 10 20
Test for overall effect	: Z = 3.74	4 (P = 0).0002)						-20 -10 0 10 20 Favours [Placebo] Favours [Levosimendan]
T 1 (×		0.00	10 0 10		000 17	0.04		

Test for subgroup differences: Chi² = 0.38, df = 2 (P = 0.83), I² = 0%

B- TSA of LVEF Change ≤ 1 week

Fig. 3 Forest plot and TSA of LVEF change: **A** forest plot; **B** TSA LVEF change ≤ 1 week. *CI* confidence interval, *LVEF* left ventricular ejection fraction, *TSA* trial sequential analysis

4.1 Limitations

This study resolved some of the limitations of Cui et al. (2021) as we unified the comparator arm.

However, this review should be interpreted considering several limitations. (1) There were heterogeneous baseline patient characteristics. (2) There was predominantly male representation (76% of included patients). (3) There was variation in dosing regimens across different RCTs; some

	Experim	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Altenberger 2014	1	63	4	57	3.4%	0.23 [0.03, 1.96]	
Comín-Colet et al. 2018	15	48	8	21	28.2%	0.82 [0.41, 1.63]	
García-González et al. 2021	13	70	12	27	31.1%	0.42 [0.22, 0.80]	_
Llorens 2012	7	25	6	20	17.2%	0.93 [0.37, 2.34]	_
Mavrogeni 2007	2	25	8	25	7.5%	0.25 [0.06, 1.06]	
Nieminen 2008 1 mg	5	103	4	102	9.3%	1.24 [0.34, 4.48]	
Shah 2014	1	25	3	25	3.3%	0.33 [0.04, 2.99]	
Total (95% CI)		359		277	100.0%	0.60 [0.40, 0.90]	•
Total events	44		45				
Heterogeneity: Tau ² = 0.03; C	hi² = 6.60,	df = 6 (F	e = 0.36);	l² = 9%			
Test for overall effect: Z = 2.43	7 (P = 0.01)						0.01 0.1 1 10 100 Favours (Levosimendan) Favours (control)

Fig. 4 Forest plot of all-cause mortality. CI confidence interval

A- Change in BNP	Exp	perimental	1		Contro	bl		Std. Mean Differ	rence Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean		SD T	otal W	eight IV, Random, 9	95% CI IV, Random, 95% CI
1.6.1 Change in BNP (p	g/ml) <	= 5 days							
Kurt 2010	-645	1,486.55	31	24.3	1,531	.11	29 3	9.9% -0.44 [-0.95	5, 0.07]
Parissis 2005	-480	905.28	42	-168	801	.86	21 3	-0.35 [-0.88	3, 0.17]
Parissis 2007 Subtotal (95% CI)	-428	1,062.4	17 90	39	76	1.6	17 21 67 10	2.4% -0.49 [-1.18 0.0% -0.42 [-0.74,	
Heterogeneity: Tau ² = 0	0.00; Ch	ni ² = 0.11, 0	df = 2 (P	= 0.95	5); l ² = 0	1%			
Test for overall effect: Z	= 2.53	(P = 0.01)							
									Favours [Levosimendan] Favours [control]
3- Event free survival	í .	Evmori	mental		Contro			Risk Ratio	Risk Ratio
Study or Subgroup		Events					Weight	M-H, Random, 95%	
Altenberger 2014		11		3	20	57	12.9%		
Comín-Colet et al. 201	10	32	-	8	8	21	14.6%		
García-González et al.		52		0	17	27	24.1%		
Parissis 2005	2021	12		7	15	17	24.1%		
Pölzl et al. 2023		53		13	31	52	25.7%		
F 0121 et al. 2025		00	, 3	5	51	52	23.7 %	0.90 [0.72, 1.	
Total (95% CI)			29	1		174	100.0%	0.97 [0.72, 1.3	30] 🔶
Total events		160	1		91				
Heterogeneity: Tau ² =	0.07; 0	Chi ² = 10.6	69, df =	4 (P =	0.03); (* = 63	%		0.01 0.1 1 10 10
Test for overall effect:	Z = 0.2	1 (P = 0.8)	4)						Favours [Levosimendan] Favours [control]
C- All cause rehospi	talizat	ion Exp	eriment	al	Contro	ol		Risk Ratio	Risk Ratio
Study or Subgrou	ID ID	Ever			vents	Total	Weight	M-H, Random, 95% C	
Comín-Colet et al	. 2018		17	48	15	21	33.4%	0.50 [0.31, 0.79	
Cui et al. 2020			0	26	0	23		Not estimable	e
García-González e	et al. 20	21	23	70	12	27	30.4%	0.74 [0.43, 1.27	n — • +
Llorens 2012			18	25	13	20	36.2%	1.11 [0.74, 1.66	5] —
Total (95% CI)				169		91	100.0%	0.75 [0.46, 1.22) +
Total events			58		40				
Heterogeneity: Ta	u ² = 0.1	3; Chi² = 6	.62, df=	2 (P =	0.04); 1	= 70°	%		0.01 0.1 1 10 100
			0.25)						

Fig. 5 Forest plot of secondary efficacy outcomes: A change in BNP; B event-free survival; C all-cause rehospitalization. *BNP* brain natriuretic peptide, *CI* confidence interval, *Std.* standardized

studies used a bolus dose while others did not, and different studies used different maintenance dosing. (4) Although all other studies used IV levosimendan, in the study by Nieminen et al., patients received oral levosimendan. (5) There was noted heterogeneity among some outcomes, including change in LVEF, event-free survival, and all-cause rehospitalization. (6) There was limited investigation into the effect of levosimendan on patient-reported quality of life in most studies.

Furthermore, this meta-analysis identified some inconsistencies in its findings. While levosimendan was associated with significant improvements in LVEF, BNP levels, and overall mortality, it did not show a significant impact on all-cause rehospitalization rates, event-free survival rates, or

Study or Subgroup Events Total Events	A- Any adverse events	Experim	nental	Cont	rol		Risk Ratio	Risk Ratio
Comin-Colei et al. 2018 5 48 2 21 4.0% 1.09 [0.23, 519] Cui et al. 2020 1 1 26 1 23 1.3% 0.88 [0.06, 13.35] Garcia-González et al. 2021 34 70 14 27 51.4% 0.94 [0.6], 1.45] Kurt 2010 2 31 0 29 1.1% 4.68 [0.23, 93.76] Lilberg 2007 5 11 7 11 15.8% 0.71 [0.33, 1.57] Lilberg 2012 5 25 5 20 8.2% 0.80 [0.27, 2.38] Total (95% Cl) 274 188 100.0% 1.00 [0.73, 1.37] Total events 68 38 Heterogeneity, Tau" = 0.00; Chi ^m = 3.80, df = 6 (P = 0.70); P = 0% Total (95% Cl) 274 188 100.0% 1.00 [0.73, 1.37] Total events 68 57 67.6% 1.70 [0.78, 3.76] Kurt 2010 1 31 0 29 4.1% 2.81 [0.12, 65.6] Kurt 2010 1 1 31 0 29 4.1% 2.81 [0.12, 65.6] Kurt 2010 2 1 3 10 57 67.6% 1.170 [0.80, 15.23] Total events 2014 7 25 2 25 19.0% 3.500 [0.80, 15.23] Total (95% Cl) 288 11 Heterogeneity, Tau" = 0.00; Chi ^m = 0.78, df = 3 (P = 0.85); P = 0% Total (95% Cl) 289 138 100.0% 2.01 [1.06, 3.82] Total events 2014 7 25 2 25 19.0% 3.500 [0.80, 15.23] Total events 2000; Chi ^m = 0.78, df = 3 (P = 0.85); P = 0% Total (95% Cl) 289 138 100.0% 2.01 [1.06, 3.82] Total events 11 1 31 0 29 4.1% 0.86 [0.28, 1.56] Mavrogeni 2007 0 25 0 25 Not estimable Mavrogeni 2007 0 25 0 25 Not estimable Nieminen 2008 1 mg 8 103 12 102 81.4% 0.86 [0.28, 1.56] Total (95% Cl) 222 241 100.0% 0.86 [0.28, 1.56] Total (95% Cl) 240 0.20 0.00 0.00 0.80 0.81, 9.6] Total (95% Cl) 222 241 100.0% 0.86 [0.28, 1.56] Total (95% Cl) 240 0.20 0.00 0.80 0.81, 9.6] Neminic negative stapprovent total 11 13 Heterogeneity Tau" = 0.03; Chi ^m =	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Cui et al. 2020 1 26 1 23 1.3% 0.98 [0.06, 13.35] García-González et al. 2021 34 70 14 27 51.4% 0.94 [0.61, 1.45] Kurt 2010 2 31 0 29 1.1% 4.89 [0.32, 93.70] Lilleberg 2007 5 11 7 11 15.8% 0.71 [0.33, 1.57] Lilleberg 2007 5 25 5 20 8.2% 0.80 [0.27, 2.38] Total (95% CI) 274 188 100.0% 1.00 [0.73, 1.37] Total events 68 38 Heterogeneity: Tau* = 0.00; Chi* = 3.80, df = 6 (P = 0.70); P = 0% Total (Weight M.H., Random, 95% CI Altenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] Cui et al. 2020 0 0 0 0 Not estimable M.H., Random, 95% CI García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Shah 2014 7 25 2 25 1.90% 3.50 [0.80, 15.23] Total (95% CI) 189 1	Altenberger 2014	16	63	9	57	18.2%	1.61 [0.77, 3.35]	· · · ·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comín-Colet et al. 2018	5	48	2	21	4.0%	1.09 [0.23, 5.19]	I — • — — • — — — — — — — — — — — — — —
Kurt 2010 2 31 0 29 1.1% 4.69 [0.23, 93.70] Lilleberg 2007 5 11 7 11 15.8% 0.71 [0.33, 1.57] Total (95% CI) 274 188 100.0% 1.00 [0.7, 2.38] Total events 68 38 Heterogeneity: Tau ² = 0.00; Ch ² = 3.80; df = 6 (P = 0.70); P = 0% Risk Ratio Risk Ratio Study or Subgroup Events Total Events Total Events Total Events Total Events Altenberger 2014 15 63 8 67 67.6% 1.70 [0.78, 3.70] H4 Random, 95% CI Altenberger 2014 15 63 8 67 67.6% 1.70 [0.78, 3.70] Cui et al. 2020 0 0 0 0 0 0 0 0 0 García-González et al. 2021 5 70 1.27 9.3% 1.93 [0.24, 15.76] M-H, Random, 95% CI Heterogeneity: Tau ² = 0.00; Ch ² = 0.78, df = 3 (P = 0.85); P = 0% 138 100.0% 2.01 [1.06, 3.82] 10.01 10 10 10 10 Cotal (95% CI) 189	Cui et al. 2020	1	26	1	23	1.3%	0.88 [0.06, 13.35]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	García-González et al. 2021	34	70	14	27	51.4%	0.94 [0.61, 1.45]	I — — ——————————————————————————————————
Liorens 2012 5 25 5 20 8.2% $0.80[0.27, 2.38]$ Total (95% Cl) 274 188 100.0% 1.00 [0.73, 1.37] Total events 68 38 Heterogeneity: Tau" = 0.00; Chi" = 3.80; df = 6 (P = 0.70); P = 0% Total (P = 0.70); P = 0% Risk Ratio B- Hypotension Experimental Control Risk Ratio Risk Ratio Study or Subgroup Events Total (P = 0.70); P = 0.78; df = 3 (P = 0.85); P = 0% 1.70 [0.78, 3.70] M.H.Random, 95% Cl Altenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] Cui et al. 2020 0 <t< td=""><td>Kurt 2010</td><td>2</td><td>31</td><td>0</td><td>29</td><td>1.1%</td><td>4.69 [0.23, 93.70]</td><td></td></t<>	Kurt 2010	2	31	0	29	1.1%	4.69 [0.23, 93.70]	
Total (95% Cl) 274 188 100.0% 1.00 [0.73, 1.37] Total events 68 38 Heterogeneity: Tau ² = 0.00; Chi ² = 3.80, df = 6 (P = 0.70); P = 0% Experimental Control Risk Ratio B- Hypotension Experimental Control Risk Ratio Risk Ratio García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kut 2010 1 31 0 29 4.1% 2.81 [0.12, 66.40] Shah 2014 7 25 2 25 100.0% 2.01 [1.06, 3.82] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total (95% Cl) Total Events Total Meight M-H, Random, 95% Cl Altenberger 2014 2 63 1 57 1.31 [0.17, 19.43] 1.41 [0.17, 19.	Lilleberg 2007	5	11	7	11	15.8%	0.71 [0.33, 1.57]	
Total events 68 38 Heterogeneity: Tau ² = 0.00; Chi ² = 3.80, df = 6 (P = 0.70); P = 0% Total events Risk Ratio B-Hypotension Experimental Control Risk Ratio NH-Random, 95% Cl Altenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] Cui et al. 2020 0 0 0 0 Not estimable Garcia-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kurt 2010 1 31 0 29 4.1% 2.81 [0.16, 6.40] M-H, Random, 95% Cl Total events 28 11 10 10 100 100 Total events 28 11 10 10 100 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% Control Risk Ratio Risk Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl Altenberger 2014 2 63 1 57 1.19% 1.81 [0.17, 19.43] M-H, Random, 95% Cl Mary orgen 2007	Llorens 2012	5	25	5	20	8.2%	0.80 [0.27, 2.38]	ı —•
Heterogeneily: Tau ² = 0.00; Chi ² = 3.00, df = 6 (P = 0.70); P = 0% Test for overall effect Z = 0.00 (P = 1.00) B- Hypotension Experimental Events Control Risk Ratio Study or Subgroup Events Total Control Risk Ratio Study or Subgroup Events Total Control Risk Ratio Altenberger 2014 15 70 2 Control Risk Ratio Garia-González et al. 2021 5 2 2 100% 2.00 (Chi ² = 0.78, df = 3 (P = 0.85); P = 0% Total (95% Cl) 189 138 Risk Ratio Study or Subgroup Events Total Weight M-H, Random, 95% Cl Altenberger 2014 2 63 1 1 1000; Chi ² = 0.03; Chi ² = 0	Total (95% CI)		274		188	100.0%	1.00 [0.73, 1.37]	↓
Test for overall effect $Z = 0.00 (P = 1.00)$ 10 10 10 B- Hypotension Experimental Control Risk Ratio Attenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] Risk Ratio Memory 2014 15 63 10 10 Not estimable Gardia-González et al. 2021 5 70 1 Risk Ratio Risk Ratio Mile Signa for a signa signa for a signa for a signa for a signa for a sign	Total events	68		38				
Test for overall effect $Z = 0.00$ (P = 1.00) Favours [Levosimendan] Gavarage Levosimendan] Gavarage Levosimendan] Gavarage Levosimendan] Favours [Levosimendan] Favours [Levosimendan] Favours [Levosimendan] Gavarage Levosimendan] Favours [Levosimendan] Favours [Levosimendan]	Heterogeneity: Tau ² = 0.00;	Chi ² = 3.80,	df = 6 (F	P = 0.70)	I ² = 0%	6		
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% Cl M-H, Random, 95% Cl Attenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] M-H, Random, 95% Cl Cui et al. 2020 0 0 0 0 0 Not estimable García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kut 2010 1 31 0 29 4.1% 2.81 [0.12, 66.40] Shah 2014 7 25 2 25 19.0% 3.50 [0.80, 15.23] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total vents 28 11 1 10 100 Fest for overall effect Z = 2.14 (P = 0.03) Experimental Control Risk Ratio Risk Ratio Attenberger 2014 2 63 1 57 6.7% 5.44 [0.23, 129.63] M-H, Random, 95% Cl Attenberger 2014 2 63 1 <t< td=""><td>Test for overall effect: Z = 0.0</td><td>00 (P = 1.00</td><td>)</td><td></td><td></td><td></td><td></td><td></td></t<>	Test for overall effect: Z = 0.0	00 (P = 1.00)					
Altenberger 2014 15 63 8 57 67.6% 1.70 [0.78, 3.70] Cui et al. 2020 0 0 0 0 Not estimable García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kurt 2010 1 31 0 29 4.1% 2.81 [0.12, 66.40] Shah 2014 7 25 2 25 19.0% 3.50 [0.80, 15.23] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% Total Weight M-H, Random, 95% Cl Test for overall effect Z = 2.14 (P = 0.03) Events Total Veight M-H, Random, 95% Cl Altenberger 2014 2 63 1 57 6.7% 5.44 [0.23, 129.63] Mavrogeni 2007 0 25 0 25 Not estimable Nieminen 2008 1 mg 8 103 12 102 81.4% 0.66 [0.28, 1.55] Total (95% Cl) 222 241 100.0% 0.86	B- Hypotension	Experim	nental	Cont	rol		Risk Ratio	Risk Ratio
Cui et al. 2020 0 0 0 0 0 Not estimable García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kurt 2010 1 31 0 29 4.1% 2.81 [0.12, 66.40] Shah 2014 7 25 2 25 19.0% 3.50 [0.80, 15.23] Total (95% CI) 189 138 100.0% 2.01 [1.06, 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% 2.01 [1.06, 3.82] Test for overall effect Z = 2.14 (P = 0.03) Experimental Control Risk Ratio Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI Altenberger 2014 2 63 1 57 11.9% 1.81 [0.17, 19.43] Image: Control of the c	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
García-González et al. 2021 5 70 1 27 9.3% 1.93 [0.24, 15.76] Kurt 2010 1 31 0 29 4.1% 2.81 [0.12, 66.40] Shah 2014 7 25 2 25 19.0% 3.50 [0.80, 15.23] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% Risk Ratio Test for overall effect Z = 2.14 (P = 0.03) Control Risk Ratio Study or Subgroup Events Total Control Risk Ratio Mavrogeni 2007 0 25 0 25 Not estimable Nieminen 2008 1 mg 8 103 12 102 81.4% 0.66 [0.28, 1.55] Total (95% Cl) 222 241 100.0% 0.86 [0.38, 1.96] Total events 11 13 13 14 14 Heterogeneity: Tau ² = 0.03; Chi ² = 2.06, df = 2 (P = 0.36); P = 3% 0.01 0.1 10 10	Altenberger 2014	15	63	8	57	67.6%	1.70 [0.78, 3.70]	+-
Kurt 2010 1 31 0 29 4.1% 2.81 0.12 , 66.40] Shah 2014 7 25 2 25 19.0% 3.50 0.80 , 15.23] Total (95% CI) 189 138 100.0% 2.01 1.06 , 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78; df = 3 (P = 0.85); l ² = 0% Control Risk Ratio C - Tachycardia Experimental Control Risk Ratio Risk Ratio Altenberger 2014 2 63 1 57 11.9% 1.81 0.17 , 1.943] Mavrogeni 2007 0 25 0 25 Not estimable Nieminen 2008 1 mg 8 103 12 102 81.4% 0.66 0.28 , 1.55] Total (95% CI) 222 241 100.0% 0.86 0.38 , 1.96] Total events 11 13 13 13 14 13 14 14 15 16 0.01 1 10 100 Total (95% CI) 222 241 100.0% 0.86 <td>Cui et al. 2020</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td>Not estimable</td> <td></td>	Cui et al. 2020	0	0	0	0		Not estimable	
Shah 2014 7 25 2 25 19.0% 3.50 [0.80, 15.23] Total (95% Cl) 189 138 100.0% 2.01 [1.06, 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% 10 Test for overall effect Z = 2.14 (P = 0.03) Experimental Control Risk Ratio Study or Subgroup Experimental Control Risk Ratio Altenberger 2014 2 63 1 57 11.9% 1.81 [0.17, 19.43] Mavrogeni 2007 0 25 0 25 Not estimable Nieminen 2008 1 mg 8 103 12 102 81.4% Total (95% Cl) 222 241 100.0% 0.86 [0.38, 1.96] Total events 11 13 13 13 Heterogeneity: Tau ² = 0.03; Chi ² = 2.06, df = 2 (P = 0.36); P = 3% 0.66 [0.28, 1.55]	García-González et al. 2021	5	70	1	27	9.3%	1.93 [0.24, 15.76]	· · · · · · · · · · · · · · · · · · ·
Total (95% CI) 189 138 100.0% 2.01 [1.06, 3.82] Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% 0.01 0.1 100 Test for overall effect Z = 2.14 (P = 0.03) Experimental Control Risk Ratio Risk Ratio Study or Subgroup Events Total Events Total Events Total Weight M-H, Random, 95% CI Altenberger 2014 2 63 1 57 11.9% 1.81 [0.17, 19.43] Image: Study or Subgroup M-H, Random, 95% CI Altenberger 2014 2 63 1 57 6.7% 5.44 [0.23, 129.63] Mavrogeni 2007 0 25 0 25 Not estimable Image: Study of Study	Kurt 2010	1	31	0	29	4.1%	2.81 [0.12, 66.40]	· · · · · · · · · · · · · · · · · · ·
Total events 28 11 Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); P = 0% 0.01 0.1 10 100 Test for overall effect: Z = 2.14 (P = 0.03) Experimental Control Risk Ratio Risk Ratio Risk Ratio Study or Subgroup Events Total Control Risk Ratio Risk Ratio Risk Ratio Altenberger 2014 2 63 1 57 11.9% 1.81 [0.17, 19.43] M-H, Random, 95% CI Altenberger 2017 0 25 0 25 Note stimable M-H, Random, 95% CI Mavrogeni 2007 0 25 0 25 Note stimable Mo.66 [0.28, 1.55] Total (95% CI) 222 241 100.0% 0.86 [0.38, 1.96] M.93 M.93 Total (95% CI) 222 241 100.0% 0.86 [0.38, 1.96] M.91 M.91 M.91 M.91 M.91 Total (95% CI) 222 241 10.0% 0.86 [0.38, 1.96] M.91	Shah 2014	7	25	2	25	19.0%	3.50 [0.80, 15.23]	i +•
Heterogeneity: Tau ² = 0.00; Chi ² = 0.78, df = 3 (P = 0.85); I ² = 0% Test for overall effect: Z = 2.14 (P = 0.03) C- Tachycardia Experimental Control Risk Ratio Study or Subgroup Events Total Control Risk Ratio M-H, Random, 95% CI Altenberger 2014 2 63 1 57 11.9% 1.81 [0.17, 19.43] M-H, Random, 95% CI Mavrogeni 2007 0 2.5 Not estimable Nierminen 2008.1 mg 8 103 1.2 102 81.4% 0.66 [0.28, 1.55] Total (95% CI) 222 241 10.00% 0.86 [0.38, 1.96] Total (95% CI) 222 241 10.0% 0.86 [0.38, 1.96] Total (95% CI) 222 241 10.0% 0.86 [0.38, 1.96] 0.01 0.1 10 10 Total (95% CI) 222 241 10.0% 0.86 [0.38, 1.96]	Total (95% CI)		189		138	100.0%	2.01 [1.06, 3.82]	◆
Test for overall effect: $Z = 2.14$ (P = 0.03) Understand C - Tachycardia Experimental Control Risk Ratio Study or Subgroup Experimental Control Risk Ratio M-H, Random, 95% CI Altenberger 2014 2 63 1								

Fig. 6 Forest plot of safety outcomes: A any adverse events; B hypotension; C tachycardia. CI confidence interval

adverse events. A subgroup analysis based on the duration of follow-up for the outcomes of all-cause rehospitalization rate and event-free survival rate also revealed no significant differences between the study groups across all subgroups (Figures S2 and S3, see the electronic supplementary material). The inconsistency in these outcomes suggests that the benefits of levosimendan may be limited or context specific. However, this discrepancy in these outcomes may be attributed to the variability of the RCTs included in each outcome analysis and the absence of data related to specific follow-up time points in some studies.

4.2 Implications for Future Research

Future adequately powered trials are needed to draw definitive conclusions regarding the efficacy of ambulatory levosimendan on cardiovascular outcomes, including cardiovascular hospitalizations, cardiovascular mortality, and quality-of-life measures. Additionally, the optimal dosing regimen needs to be refined. Subsequent studies should investigate whether the effects of levosimendan are consistent across the spectrum of heart failure ejection fraction subtypes, heart failure etiologies, and different follow-up periods. Exploring levosimendan's efficacy in patients with RV heart failure is also an important area for exploration.

5 Conclusion

Our systematic review and meta-analysis suggest that intermittent levosimendan is associated with a significantly higher LVEF, lower BNP levels, and lower all-cause mortality in patients with chronic heart failure. However, levosimendan use was not associated with a reduction in all-cause rehospitalization.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40256-024-00675-z.

Acknowledgements None.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Declarations

Author contributions M.A., B.P. and C.B. conceived the idea. B.A., A.S.E. and M.A. designed the research workflow. B.A. and M.A. searched the databases. A.M.A., M.E., S.E. and A.R.S. screened the retrieved records, extracted relevant data, assessed the quality of evidence, and B.A. and A.S.E resolved the conflicts. Y.S. performed the analysis. R.G., Y.S. and A.S.E. wrote the final manuscript. B.A., B.P., and C.B. supervised the project. All authors have read and agreed to the final version of the manuscript.

Conflict of interest The authors declare no conflict of interest.

Funding We received no funding for this study.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Availability of data and materials Not applicable.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

References

- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.
- Sterling MR, Ringel JB, Pinheiro LC, Safford MM, Levitan EB, Phillips E, et al. Social determinants of health and 90-day mortality after hospitalization for heart failure in the regards study. J Am Heart Assoc. 2020;9.
- Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation. 2021;143:e254-743.
- Yang Q, Cogswell ME, Dana Flanders W, Hong Y, Zhang Z, Loustalot F, et al. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among us adults. JAMA. 2012;307:1273–83.

- The efficacy and safety of new potassium binders on reninangiotensin-aldosterone system inhibitor optimization in heart failure patients: a systematic review and meta-analysis— Abuelazm—2024—ESC Heart Failure—Wiley Online Library [Internet]. https://doi.org/10.1002/ehf2.14588. Cited 19 Mar 2024.
- 6. Repetitive LevosimenDan infusions fOR patients with advanced chronic heart failure in the vulnerable post-discharge period: the multinational randomized LeoDOR trial. Eur Heart J Oxford Academic [Internet]. https://academic.oup.com/eurheartj/article/44/ Supplement_2/ehad655.798/7391695. Cited 9 Dec 2023.
- Grossini E, Farruggio S, Pierelli D, Bolzani V, Rossi L, Pollesello P, et al. Levosimendan improves oxidative balance in cardiogenic shock/low cardiac output patients. J Clin Med. 2020;9:373.
- Bouchez S, Fedele F, Giannakoulas G, Gustafsson F, Harjola VP, Karason K, et al. Levosimendan in acute and advanced heart failure: an expert perspective on posology and therapeutic application. Cardiovasc Drugs Ther. 2018;32:617–24.
- Francis GS, Bartos JA, Adatya S. Inotropes. J Am Coll Cardiol. 2014;63:2069–78.
- Nieminen MS, Akkila J, Hasenfuss G, Kleber FX, Lehtonen LA, Mitrovic V, et al. Hemodynamic and neurohumoral effects of continuous infusion of levosimendan in patients with congestive heart failure. J Am Coll Cardiol. 2000;36:1903–12.
- 11. Parissis JT, Adamopoulos S, Farmakis D, Filippatos G, Paraskevaidis I, Panou F, et al. Effects of serial levosimendan infusions on left ventricular performance and plasma biomarkers of myocardial injury and neurohormonal and immune activation in patients with advanced heart failure. Heart. 2006;92:1768–72.
- 12. Packer M, Colucci W, Fisher L, Massie BM, Teerlink JR, Young J, et al. Effect of levosimendan on the short-term clinical course of patients with acutely decompensated heart failure. JACC Heart Fail. 2013;1:103–11.
- Parissis JT, Panou F, Farmakis D, Adamopoulos S, Filippatos G, Paraskevaidis I, et al. Effects of Levosimendan on markers of left ventricular diastolic function and neurohormonal activation in patients with advanced heart failure. Am J Cardiol. 2005;96:423–6.
- Thackray S, Easthaugh J, Freemantle N, Cleland JGF. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure—a meta-regression analysis. Eur J Heart Fail. 2002;4:515–29.
- Short-term intravenous milrinone for acute exacerbation of chronic heart failure: a randomized controlled trial. Cardiology. JAMA. JAMA Network [Internet]. https://jamanetwork.com/journ als/jama/fullarticle/194768. Cited 28 Mar 2024.
- Efficacy and safety of intermittent repeated levosimendan infusions in advanced heart failure patients: the LAICA study— García-González—2021—ESC heart failure—Wiley Online Library [Internet]. https://doi.org/10.1002/ehf2.13670. Cited 9 Dec 2023.
- 17. Kurt IH, Yavuzer K, Batur MK. Short-term effect of levosimendan on free light chain kappa and lambda levels in patients with decompensated chronic heart failure. Heart Vessels. 2010;25:392–9.
- Lilleberg J, Laine M, Palkama T, Kivikko M, Pohjanjousi P, Kupari M. Duration of the haemodynamic action of a 24-h infusion of levosimendan in patients with congestive heart failure. Eur J Heart Fail. 2007;9:75–82.
- Llorens P, Miro O, Roman F, Zapater P, Carbajosa-Dalmau J, Llanos L. Efficacy of early administration of levosimendan in emergency department in patients with acute heart failure: a randomized pilot clinical trial. Emergencias. 2012;24:268–76.
- Mavrogeni S, Giamouzis G, Papadopoulou E, Thomopoulou S, Dritsas A, Athanasopoulos G, et al. A 6-month follow-up of intermittent levosimendan administration effect on systolic function,

specific activity questionnaire, and arrhythmia in advanced heart failure. J Card Fail. 2007;13:556–9.

- Nieminen MS, Cleland JGF, Eha J, Belenkov Y, Kivikko M, Põder P, et al. Oral levosimendan in patients with severe chronic heart failure—the PERSIST study. Eur J Heart Fail. 2008;10:1246–54.
- 22. Effects of levosimendan on quality of life and emotional stress in advanced heart failure patients. Cardiovasc Drugs Ther. [Internet]. https://doi.org/10.1007/s10557-007-6034-2. Cited 9 Dec 2023.
- 23. Shah B, Sharma P, Brahmbhatt A, Shah R, Rathod B, Shastri N, et al. Study of levosimendan during off-pump coronary artery bypass grafting in patients with LV dysfunction: a double-blind randomized study. Indian J Pharmacol. 2014;46:29–34.
- Zhang D, Yao Y, Qian J, Huang J. Levosimendan improves clinical outcomes of refractory heart failure in elderly chinese patients. Med Sci Monit. 2015;21:2439–45.
- 25. Comín-Colet J, Manito N, Segovia-Cubero J, Delgado J, García Pinilla JM, Almenar L, et al. Efficacy and safety of intermittent intravenous outpatient administration of levosimendan in patients with advanced heart failure: the LION-HEART multicentre randomised trial. Eur J Heart Fail. 2018;20:1128–36.
- Cui XR, Yang XH, Li RB, Wang D, Jia M, Bai L, et al. Shortterm efficacy and safety of levosimendan in patients with chronic systolic heart failure. Cardiovasc J Afr. 2020;31:196–200.
- Altenberger J, Parissis JT, Costard-Jaeckle A, Winter A, Ebner C, Karavidas A, et al. Efficacy and safety of the pulsed infusions of levosimendan in outpatients with advanced heart failure (LevoRep) study: a multicentre randomized trial. Eur J Heart Fail. 2014;16:898–906.
- The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ [Internet]. https://www.bmj.com/conte nt/372/bmj.n71. Cited 9 Dec 2023.
- Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions— PubMed [Internet]. https://pubmed.ncbi.nlm.nih.gov/31643080/. Cited 9 Dec 2023.
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: 14898.
- 31. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schünemann HJ. What is "quality of evidence" and why is it important to clinicians? BMJ. 2008;336:995–8.
- Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.
- Collaboration C. Review Manager (RevMan)[Computer program]. Version 5.3. 5. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration. The; 2014.
- 34. Abuelazm M, Ali S, AlBarakat MM, Mahmoud A, Tanashat M, Suilik HA, et al. Istaroxime for patients with acute heart failure: a systematic review and meta-analysis of randomized controlled trials. Diseases. 2023;11:183.
- 35. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: cochrane book series.
- Wetterslev J, Jakobsen JC, Gluud C. Trial sequential analysis in systematic reviews with meta-analysis. BMC Med Res Methodol. 2017;17:39.
- Elsaeidy AS, Taha AM, Abuelazm M, Soliman Y, Ali MA, Alassiri AK, et al. Efficacy and safety of extracorporeal membrane oxygenation for cardiogenic shock complicating myocardial

infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord. 2024;24:362.

- Tomasoni D, Pagnesi M, Colombo G, Chiarito M, Stolfo D, Baldetti L, et al. Guideline-directed medical therapy in severe heart failure with reduced ejection fraction: an analysis from the HELP-HF registry. Eur J Heart Fail. 2024;26:327–37.
- Ambulatory inotrope infusions in advanced heart failure: a systematic review and meta-analysis—PMC [Internet]. https://www. ncbi.nlm.nih.gov/pmc/articles/PMC6119101/. Cited 8 Mar 2024.
- 40. Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/ American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145:e895-1032.
- Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N Engl J Med [Internet]. https://doi.org/10.1056/ NEJMoa2025797. Cited 2 Aug 2024.
- 42. Elsherbini H, Soliman O, Zijderhand C, Lenzen M, Hoeks SE, Kaddoura R, et al. Intermittent levosimendan infusion in ambulatory patients with end-stage heart failure: a systematic review and meta-analysis of 984 patients. Heart Fail Rev. 2022;27:493–505.
- 43. Cui D, Liao Y, Li G, Chen Y. Levosimendan can improve the level of B-type natriuretic peptide and the left ventricular ejection fraction of patients with advanced heart failure: a meta-analysis of randomized controlled trials. Am J Cardiovasc Drugs. 2021;21:73–81.
- 44. Hu Y, Wei Z, Zhang C, Lu C, Zeng Z. The effect of levosimendan on right ventricular function in patients with heart dysfunction: a systematic review and meta-analysis. Sci Rep. 2021;11:24097.
- 45. Kapelios CJ, Lund LH, Wever-Pinzon O, Selzman CH, Myers SL, Cantor RS, et al. Right heart failure following left ventricular device implantation: natural history, risk factors, and outcomes: an analysis of the STS INTERMACS database. Circ Heart Fail. 2022;15: e008706.
- 46. Lannemyr L, Ricksten S-E, Rundqvist B, Andersson B, Bartfay S-E, Ljungman C, et al. Differential effects of levosimendan and dobutamine on glomerular filtration rate in patients with heart failure and renal impairment:a randomized double-blind controlled trial. J Am Heart Assoc. 2018;7: e008455.
- Yilmaz MB, Yalta K, Yontar C, Karadas F, Erdem A, Turgut OO, et al. Levosimendan improves renal function in patients with acute decompensated heart failure: comparison with dobutamine. Cardiovasc Drugs Ther. 2007;21:431–5.
- Zemljic G, Bunc M, Yazdanbakhsh AP, Vrtovec B. Levosimendan improves renal function in patients with advanced chronic heart failure awaiting cardiac transplantation. J Card Fail. 2007;13:417–21.
- Moreno N, Tavares-Silva M, Lourenço AP, Oliveira-Pinto J, Henriques-Coelho T, Leite-Moreira AF. Levosimendan: The current situation and new prospects. Rev Port Cardiol Orgao Of Soc Port Cardiol Port J Cardiol Off J Port Soc Cardiol. 2014;33:795–800.