

Shrinkage of Regression Coefficients: Old Concepts and New Ideas

Daniela Dunkler *

Joint work with Georg Heinze & Willi Sauerbrei

* Section for Clinical Biometrics Center for Medical Statistics, Informatics and Intelligent Systems Medical University of Vienna

SETTING THE SCENE ...

- Prognostic model
 - 1. Variable selection use the same data
 - 2. Estimation

- Large sample size
- Small to medium sample size
 - → overestimation of some effects
 - → one possible solution:

post-estimation shrinkage

may improve predictive accuracy

SETTING THE SCENE ...

- Prognostic model
 - 1. Variable selection
 - 2. Estimation

use the same data

3. Estimate shrinkage factor \hat{c}

4. Apply shrinkage factor to final model: $\hat{\gamma} = \hat{c}\hat{\beta}$

Cox proportional hazards model

$$h_i(t) = h_0(t)exp(\beta_1 x_{1i} + ... + \beta_k x_{ki})$$
 $i=1,..., n$
 $j=1,...,k$

GLOBAL SHRINKAGE

- One common shrinkage factor for all predictors

GLOBAL SHRINKAGE

- One common shrinkage factor for all predictors
- Leave-one-out cross-validation
 - 1. Re-estimate the final model n times, each time leaving out one subject (i): $\hat{\beta}^{(-i)}$
 - 2. Cross-validated prognostic indices

$$\hat{\eta}_i^* = \sum_{j=1}^k \hat{\beta}_j^{(-i)} x_{ij}$$

3. $h_i(t) = h_0(t) exp(\mathbf{c}\hat{\eta}_i^*)$

 \hat{c} = global shrinkage factor

 \rightarrow globally shrunken $\hat{\gamma}_{G,j} = \hat{c}\hat{\beta}_j$,

$$j=1,..., k$$

(Verweij & van Houwelingen 1993)

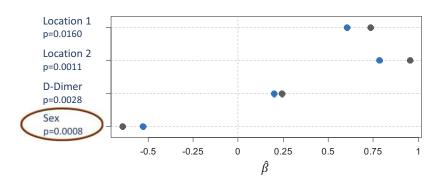
THROMBOSIS STUDY

- Predict recurrence of thrombosis
- 832 patients, 143 events
- Median follow-up 43 months
- 9 candidate predictors
- 1. Use variable selection to derive a parsimonious model
 - Location of 1st thrombosis (3 categories)
 - D-Dimer (log₂)
 - Sex
- 2. Estimation (with the same data)

(Eichinger et al. 2010)

THROMBOSIS STUDY

	Location 1	Location 2	D-Dimer	Sex
global	0.822			



PARAMETERWISE SHRINKAGE

- Shrink strong predictors and weak predictors differently
- For models derived by variable selection

PARAMETERWISE SHRINKAGE

- Shrink strong predictors and weak predictors differently
 - 1. Re-estimate the final model n times, each time leaving out one subject (i): $\hat{\beta}^{(-i)}$
 - 2. Cross-validated partial prognostic indices

$$\hat{\eta}_{ij}^* = \hat{\beta}_j^{(-i)} x_{ij},$$

j=1,...,k

3.
$$h_i(t) = h_0(t) exp(\sum_{j=1}^{k} c_j \hat{\eta}_{ij}^*)$$

 \hat{c}_j = parameterwise shrinkage factors

ightharpoonup parameterwisely shrunken $\hat{\gamma}_{P,j} = \hat{c}_j \hat{\beta}_j$

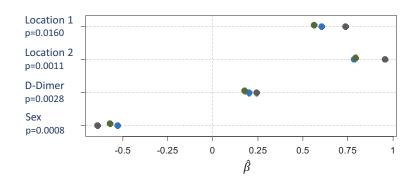
(Sauerbrei 1999)

PARAMETERWISE SHRINKAGE

- Possible to directly estimate $\hat{\gamma}_{P,j}$
 - Modify $x_{ij}^* = \hat{\eta}_{ij}^*/\hat{\beta}_j = \left(\hat{\beta}_j^{(-i)} x_{ij}\right)/\hat{\beta}_j$
 - $h_i(t) = h_0(t) exp\left(\sum_{i}^{k} \gamma_{P,j} x_{ij}^*\right)$

THROMBOSIS STUDY

	Location 1	Location 2	D-Dimer	Sex
global	0.822			
parameterwise	0.764	0.828	0.728	0.890



JOINT SHRINKAGE

 Provide one shrinkage factor for highly correlated or semantically related predictors,

e.g.:

- Design variables modeling a non-linear effect $(\beta_1 x + \beta_2 x^2)$
- 2 main effects and their product term $(\beta_1 x + \beta_2 z + \beta_3 xz)$
 - → Coefficients cannot be interpreted separately
- Dummy variables of a categorical predictor

JOINT SHRINKAGE

- 1. Re-estimate the final model n times, each time leaving out one subject (i): $\hat{\beta}^{(-i)}$
- 2. For β_1 to β_l : Cross-validated <u>joint partial</u> prognostic indices

$$\hat{\eta}_{i(1:l)}^* = \sum_{j=1}^l x_{ij} \hat{\beta}_j^{(-i)}$$

For $\beta_{(l+1)}$ to β_k : Cross-validated <u>partial</u> prognostic indices

$$\hat{\eta}_{ij}^* = x_{ij}\hat{\beta}_j^{(-i)}$$

3. $h_i(t) = h_0(t) exp(c_1 \hat{\eta}_{i(1:l)}^* + \sum_{j=l+1}^k c_j \hat{\eta}_{ij}^*)$

$$\hat{c}_1$$
 = joint shrinkage factor

 \rightarrow jointly shrunken $\hat{\gamma}_{I,i} = \hat{c}_1 \hat{\beta}_i$,

$$i=1.....l$$

$$\hat{\gamma}_{J,j} = \hat{c}_j \hat{\beta}_j,$$

$$j=(l+1),...,k$$

BREAST CANCER STUDY

- Random sample: 400 patients, 153 events
- Median follow-up 54 months
- Predict disease free survival time
- 8 candidate predictors

age progesterone # positive lymph nodes tumour grade treatment

tumour size menopausal status estrogene

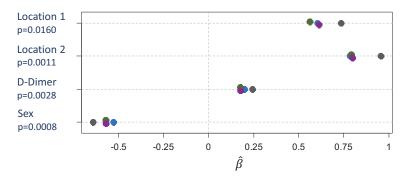
- Allow non-linear effects
 - → multivariable fractional polynomials

$$h_i(t) = h_0(t) exp(-5.6age^{-1} - 3.3age^{-1}log(age) - -0.2prog^{0.5} - 2.3exp(-0.12nodes) + +2.0grade - 0.7treat)$$

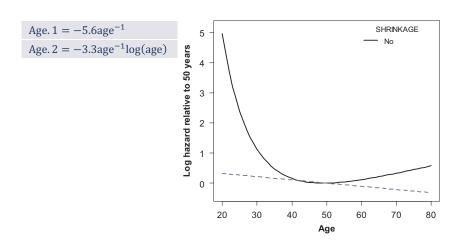
(Schumacher et al. 1994, Sauerbrei & Royston 1999)

THROMBOSIS STUDY

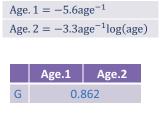
	Location 1	Location 2	D-Dimer	Sex
global	0.822			
parameterwise	0.764	0.828	0.728	0.890
joint	0.836		0.736	0.893

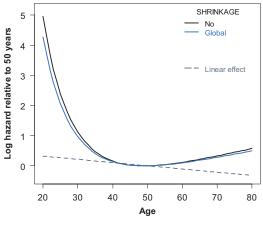


BREAST CANCER STUDY

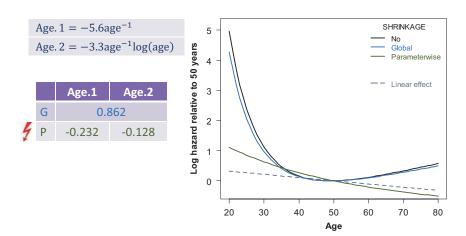


BREAST CANCER STUDY

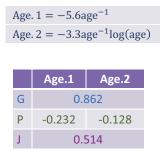


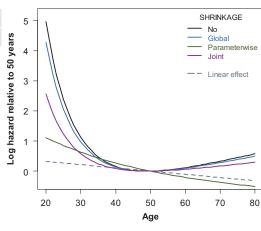


BREAST CANCER STUDY



BREAST CANCER STUDY





ESTIMATION OF SHRINKAGE FACTORS

• Leave-one-out cross-validation

$$\hat{\beta}^{(-i)}$$

$$i=1,...,n$$

- *n*+2 iterative fitting processes
- Approximation with *DFBETA* residuals
 - $\hat{\beta}^{(-i)} \approx \hat{\beta} DFBETA_i$
 - + Saves *n* iterative fitting processes
 - Small samples: shrinkage factors may be closer to 1

ESTIMATION OF SHRINKAGE FACTORS

• Thrombosis study (*n*=832): joint shrinkage factors

	Leave-one-out CV	DFBETA	Difference
Location 1 & 2	0.8345	0.8363	+0.22%
D-Dimer	0.7233	0.7357	+1.71%
Sex	0.8896	0.8927	+0.35%
Computing time	6.07 sec	0.06 sec	~ 100 times

POST-ESTIMATION SHRINKAGE

Prognostic modeling: Variable selection & estimation with the same data → overestimation → post-estimation shrinkage may improve predictive accuracy

• Types of shrinkage factors:

vanHouwelingen & Sauerbrei 2013

■ Global – One common shrinkage factor

If
$$0.8 < \hat{c} < 1 \implies \hat{\gamma}_{G,i}$$

- Parameterwise One shrinkage factor per predictor (prognostic relevance) For models derived by variable selection
- Joint One shrinkage factor for semantically related/highly correlated predictors (if their coefficients cannot be separated)
- Computational time: DFBETA approximation
- R package **shrink** for linear, generalized linear, or Cox models; fractional polynomials, restricted cubic splines; availabe at cran

contact: daniela.dunkler@meduniwien.ac.at