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Background

� Case-control studies for detection of 
plasma-proteomic signature

� What are plasma-proteomics?

Determine molecules (peptides) in blood plasma 
samples by mass spectrometry

→ Estimation of peptide abundance (‘intensity’)

Many peptides  are found only in part of the samples

→ frequent occurrence of zero intensities

Background

� Identify features (biomarkers) to predict health 
status (‘case‘ vs. ‘control‘) 

� D … dichotomous variable 

(1 if non-zero intensity, 0 if zero intensity)

� X … continuous log2-transformed intensities

Log2(0) = -∞ → What should we do?

Feature

Variable 
D

Variable 
X

Subject Feature_1 D_1 X_1 

1 0 0 ?

2 32768 1 15

3 1048576 0 20

4 0 0 ?

… … … … 

170 4096 1 12

171 0 0 ?

172 16384 1 14

Subject Feature_1 D_1 

1 0 0
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3 1048576 0

4 0 0

… … … 

170 4096 1
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172 16384 1

Subject Feature_1 

1 0
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4 0
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170 4096

171 0

172 16384
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Where should the zeros be placed? 

Variable X
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δ δ

At distance δ left to the minimum of the non-zero values.

If D=0, we set X to a feature-specific min(XD=1)- δ
→ δ is a global tuning parameter

δ є {log(2i), i=1,...,8}

Two step model building process

How to make use of both parts, X and D, for selecting 
features?

(1) LASSO for feature selection:

Using X only

(2) Ridge regression for re-estimation:
Using X and D of each selected feature

Lambda parameters of the LASSO (λ1) and 
ridge regression (λ2) are optimized using cross-validated 
deviance. 

j1( )β λ β− ∑l

j

2

2( )β λ β− ∑l
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π

Repeat cycle one time without selected features 
of first run � second line model

Process

Ridge
regression

λ2

Selected       features

LASSO λ1

distance   δ

minimize cross-validated deviance

Non-informative filtering (π)
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Number of subjects = 172
Number of features = 5347

� Filtering out features with excess frequencies of zero 

intensities 

� π є {12.5%, 25%, 33%, 50%}

% of non-zero 

intensities
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Process

Ridge
regression

λ2

Selected       features

LASSO λ1

π

minimize cross-validated deviance

distance   δ % of non-zero 
intensities

Second-line models

� Investigators are most interested in obtaining a 
greedy list of features

� Some peptides are biologically not identifiable

‘Second-line’ model:

(1) Remove selected features from the ‘first line’ model 
of the pool of candidates

(2) Repeat model building to select features waiting in 
‘second line’
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Approaches

Strategy LASSO step Ridge step

X_XD using X only using X and D of the selected features

Approaches

Strategy LASSO step Ridge step

X_XD using X only using X and D of the selected features

D_D using D only using only D of the selected features

X_X using X only using only X of the selected features

XD_XD using X and D independently using the selected X and D
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Model building: Results

Number of selected features 
(% of columnwise set union of selected features)

Optimal π

% of non-zeros (π)

Strategy 12.5% 25% 33% 50%

X_XD 

D_D 

X_X 

XD_XD 

20 17 15 10

% of non-zeros (π)

Strategy 12.5% 25% 33% 50%

X_XD 14 14 12 9

D_D 14 14 12 9

X_X 15 12 10 6

XD_XD 18 13 11 9

20 17 15 10

% of non-zeros (π)

Strategy 12.5% 25% 33% 50%

X_XD 14 (70%) 14 (82.4%) 12 (80.0%) 9 (90%)

D_D 14 (70%) 14 (82.4%) 12 (80.0%) 9 (90%)

X_X 15 (75%) 12 (70.6%) 10 (66.7%) 6 (60%) 

XD_XD 18 (90%) 13 (76.5%) 11 (73.3%) 9 (90%)

20 (100%) 17 (100%) 15 (100%) 10 (100%)

% of non-zeros (π)

Strategy 12.5% 25% 33% 50%

X_XD 14 (70%) 14 (82.4%) 12 (80.0%) 9 (90%)

D_D 14 (70%) 14 (82.4%) 12 (80.0%) 9 (90%)

X_X 15 (75%) 12 (70.6%) 10 (66.7%) 6 (60%) 

XD_XD 18 (90%) 13 (76.5%) 11 (73.3%) 9 (90%)

20 (100%) 17 (100%) 15 (100%) 10 (100%)
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Model building: Results

Evaluating model performance: 
measures

Models are compared by the following performance 
measures:

� Concordance index (C-index)

� Predictive accuracy:

Mean absolute difference of y and estimated 
predictor 

� Misclassification rate (for ‘cases‘ and ‘controls‘)

i i
n y p1 ˆ− −∑
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Evaluating model performance: 
Another (outer) cross validation loop
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‚Leave-two-out‘ cross validation
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3 0 7062

4 0 0
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Results: Performance
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X_XD D_D X_X XD_XD

Misclassification rate
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Conclusions

Analysing several data sets we conclude:

� X_X, X_XD and XD_XD performed similarly
D_D was uniformly worse

� Including D does not improve performance

� Marginal impact of the value of distance δ

� Choice of the required minimum proportion 
of non-zeros (π) is crucial
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Thanks for your 
attention!
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